822 resultados para Adaptive Control Design


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This document lists the undesirable effects of water hyacinth (Eichhornia crassipes) on fisheries in Lake Kainji (Nigeria) and the integrated Water Hyacinth Control Programme in its ongoing fisheries management and development activities on the lake. Special regard is given to the design, construction and installation of a water hyacinth barrier across the River Niger. (PDF contains 44 pages)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, ac- tuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based spec- ifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considera- tions for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area.

This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller.

The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and dynamic state estimation is ex- plored. Given a set placement of sensors on an electric power system, measurements from these sensors can be used in conjunction with control logic to infer the state of the system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A neural network is a highly interconnected set of simple processors. The many connections allow information to travel rapidly through the network, and due to their simplicity, many processors in one network are feasible. Together these properties imply that we can build efficient massively parallel machines using neural networks. The primary problem is how do we specify the interconnections in a neural network. The various approaches developed so far such as outer product, learning algorithm, or energy function suffer from the following deficiencies: long training/ specification times; not guaranteed to work on all inputs; requires full connectivity.

Alternatively we discuss methods of using the topology and constraints of the problems themselves to design the topology and connections of the neural solution. We define several useful circuits-generalizations of the Winner-Take-All circuitthat allows us to incorporate constraints using feedback in a controlled manner. These circuits are proven to be stable, and to only converge on valid states. We use the Hopfield electronic model since this is close to an actual implementation. We also discuss methods for incorporating these circuits into larger systems, neural and nonneural. By exploiting regularities in our definition, we can construct efficient networks. To demonstrate the methods, we look to three problems from communications. We first discuss two applications to problems from circuit switching; finding routes in large multistage switches, and the call rearrangement problem. These show both, how we can use many neurons to build massively parallel machines, and how the Winner-Take-All circuits can simplify our designs.

Next we develop a solution to the contention arbitration problem of high-speed packet switches. We define a useful class of switching networks and then design a neural network to solve the contention arbitration problem for this class. Various aspects of the neural network/switch system are analyzed to measure the queueing performance of this method. Using the basic design, a feasible architecture for a large (1024-input) ATM packet switch is presented. Using the massive parallelism of neural networks, we can consider algorithms that were previously computationally unattainable. These now viable algorithms lead us to new perspectives on switch design.