954 resultados para 0305 Organic Chemistry


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recoverable (Sa)-binam-l-prolinamide in combination with benzoic acid is used as catalysts in the direct aldol reaction between cycloalkyl, alkyl, and α-functionalized ketones and aldehydes under solvent-free reaction conditions. Three different methods are assayed: simple conventional magnetic stirring, magnetic stirring after previous dissolution in THF and evaporation, and ball mill technique. These procedures allow one to reduce not only the amount of required ketone to 2 equiv but also the reaction time to give the aldol products with regio-, diastereo-, and enantioselectivities comparable to those in organic or aqueous solvents. Generally anti-isomers are mainly obtained with enantioselectivities up to 97%. The reaction can be carried out under these conditions also using aldehydes as nucleophiles, yielding after in situ reduction of the aldol products the corresponding chiral 1,3-diols with moderate to high enantioselectivities mainly as anti-isomers. The aldol reaction has been studied by the use of positive ESI-MS technique, providing the evidence of the formation of the corresponding enamine−iminium intermediates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Palladium-catalyzed Heck alkynylation cross-coupling reactions between terminal alkynes and deactivated aryl chlorides and aryl bromides can be performed in the absence of copper cocatalyst with water as solvent at 130 °C under microwave irradiation. An oxime-derived chloro-bridged palladacycle is an efficient precatalyst for this transformation with 2-dicyclohexylphosphanyl-2′,4′,6′-triisopropylbiphenyl (XPhos) as ancillary ligand, pyrrolidine as base, and SBDS as surfactant. All of the reactions can be performed under air and with reagent-grade chemicals under low loading conditions (0.1–1 mol-% Pd).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The monoguanylation of (1S,2S)- and (1R,2R)-cyclohexane-1,2-diamine affords chiral primary amine-guanidines that are used as chiral organocatalysts in the enantioselective Michael addition of aldehydes, particularly α,α-disubstituted aldehydes, to maleimides. The reaction is carried out in the presence of imidazole, as an additive, in aqueous N,N-dimethylformamide, as the solvent, and affords the corresponding enantioenriched succinimides in high or quantitative yields with enantioselectivities up to 96 % ee. Theoretical calculations (DFT and M06–2X) suggest a different hydrogen-bonding coordination pattern between the maleimide (C=O) and the catalyst (NH groups) is responsible for the enantioinduction switch that is observed when the reaction is carried out using primary amine-guanidines versus primary amine-thioureas as the organocatalysts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A wide variety of chiral succinimides have been prepared in high yields and enantioselectivities by asymmetric conjugate addition of 1,3-dicarbonyl compounds to maleimides under very mild reaction conditions using a bifunctional benzimidazole-derived organocatalyst. Computational and NMR studies support the hydrogen-bonding activation role of the catalyst and the origin of the stereoselectivity of the process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reviews the present state of the catalytic enantioselective Reformatsky reaction. Advancements in asymmetric versions of this reaction have recently led to a considerable extension of its scope and applicability, principally due to the use of highly active chiral ligands and very specific reaction conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wet unsupported and supported 1,1′-binaphthalene-2,2′-diamine (BINAM) derived prolinamides are efficient organocatalysts under solvent-free conditions at room temperature to perform the synthesis of chiral tacrine analogues in good yields (up to 93%) and excellent enantioselectivies (up to 96%). The Friedländer reaction involved in this process takes place with several cyclohexanone derivatives and 2-aminoaromatic aldehydes, and it is compatible with the presence of either electron-withdrawing or electron-donating groups at the aromatic ring of the 2-aminoaryl aldehyde derivatives used as electrophiles. The reaction can be extended to cyclopentanone derivatives, affording a regioisomeric but separable mixture of products. The use of the wet silica gel supported organocatalyst, under solvent-free conditions, for this process led to the expected product (up to 87% enantiomeric excess), with its reuse being possible at least up to five times.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Highly enantiomerically enriched γ- and δ-lactams have been prepared by a simple and very efficient procedure that involves the asymmetric transfer hydrogenation of N-(tert-butylsulfinyl)iminoesters followed by desulfinylation of the nitrogen atom and spontaneous cyclization to the desired lactams during the basic workup procedure. Five- and six-membered ring lactams bearing aromatic, heteroaromatic, and aliphatic substituents have been obtained in very high yields and ee’s up to >99%. A slight modification of the procedure also allowed the preparation of ε-lactams in good yields and very high enantioselectivities. Both enantiomers of the final lactams could be prepared with equal efficiency by changing the absolute configuration of the sulfinyl chiral auxiliary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Highly optically enriched, protected, nitrogenated heterocycles with different ring sizes have been synthesized by a very efficient methodology consisting of the asymmetric transfer hydrogenation of N-(tert-butylsulfinyl)haloimines followed by treatment with a base to promote an intramolecular nucleophilic substitution process. N-Protected aziridines, pyrrolidines, piperidines, and azepanes bearing aromatic, heteroaromatic, and aliphatic substituents have been obtained in very high yields and diastereomeric ratios up to >99:1. The free heterocycles can be easily obtained by a simple and mild desulfinylation procedure. Both enantiomers of the free heterocycles can be prepared with the same good results by changing the absolute configuration of the sulfur atom of the sulfinyl group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of proline as catalyst for the aldol process has given a boost to the development of organocatalysis as a research area. Since then, a plethora of organocatalysts of diverse structures have been developed for this and other organic transformations under different reaction conditions. The use of an organic molecule as catalyst to promote a reaction meets several principles of Green Chemistry. The implementation of solvent-free methodologies to carry out the aldol reaction was soon envisaged. These solvent-free processes can be performed using conventional magnetic stirring or applying ball milling techniques and are even compatible with the use of supported organocatalysts as promoters, which allows the recovery and reuse of the organocatalysts. In addition, other advantages such as the reduction of the required amount of nucleophile and the acceleration of the reaction are accomplished by using solvent-free conditions leading to a “greener” and more sustainable process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen peroxide is a substrate or side-product in many enzyme-catalyzed reactions. For example, it is a side-product of oxidases, resulting from the re-oxidation of FAD with molecular oxygen, and it is a substrate for peroxidases and other enzymes. However, hydrogen peroxide is able to chemically modify the peptide core of the enzymes it interacts with, and also to produce the oxidation of some cofactors and prostetic groups (e.g., the hemo group). Thus, the development of strategies that may permit to increase the stability of enzymes in the presence of this deleterious reagent is an interesting target. This enhancement in enzyme stability has been attempted following almost all available strategies: site-directed mutagenesis (eliminating the most reactive moieties), medium engineering (using stabilizers), immobilization and chemical modification (trying to generate hydrophobic environments surrounding the enzyme, to confer higher rigidity to the protein or to generate oxidation-resistant groups), or the use of systems capable of decomposing hydrogen peroxide under very mild conditions. If hydrogen peroxide is just a side-product, its immediate removal has been reported to be the best solution. In some cases, when hydrogen peroxide is the substrate and its decomposition is not a sensible solution, researchers coupled one enzyme generating hydrogen peroxide “in situ” to the target enzyme resulting in a continuous supply of this reagent at low concentrations thus preventing enzyme inactivation. This review will focus on the general role of hydrogen peroxide in biocatalysis, the main mechanisms of enzyme inactivation produced by this reactive and the different strategies used to prevent enzyme inactivation caused by this “dangerous liaison”.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1-Benzyl-3-(2-hydroxy-2-phenylethyl)imidazolium chloride (5), which is a precursor of an N-heterocyclic carbene ligand, in combination with palladium acetate, has been employed as an effective catalyst for the fluorine-free Hiyama reaction. A systematic study of the catalytic mixture, by a 32 factorial design, has revealed that both the amount of palladium and the Pd/NHC precursor ratio are important factors for obtaining good yields of the coupling products, indicating an interaction between them. The best catalytic system involves mixing 0.1 mol-% palladium acetate in a 1:5 ratio (Pd/salt 5), which allows the effective coupling of a range of aryl bromides and chlorides with trimethoxy(phenyl)silane. The Hiyama reactions are carried out in NaOH solution (50 % H2O w/w), at 120 °C under microwave irradiation during 60 min.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bromonium-promoted cyclization of conjugated aminodienes is described. The reaction proceeds smoothly in the presence of N-bromosuccinimide as halonium promoter, and using N-tosyl-protected aminodienes as substrates, to give the corresponding halocyclization products in high yields and with high diastereoselectivities. It can be envisaged that the formation of these products is the result of an SN2′-type ring-opening of a terminal bromonium intermediate in a 5-exo-trig or 6-exo-trig cyclization mode. The presence of an allyl bromide moiety in the haloamination products makes these molecules highly attractive from a synthetic point of view, as it opens the way for further transformations. Thus, allylic substitution reactions with different nucleophiles (acetate, azide, cyanide, and malonate), palladium-catalysed Suzuki coupling, and silver-mediated bromine displacement reactions were carried out successfully.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A variety of hydroxy- and amino-functionalized imidazoles were prepared from 1-methyl- and 1-(diethoxymethyl)imidazole by means of isoprene-mediated lithiation followed by reaction with an electrophile. These compounds in combination with palladium acetate were screened as catalyst systems for the Hiyama reaction under fluorine-free conditions using microwave irradiation. The systematic study of the catalytic system showed 1-methyl-2-aminoalkylimidazole derivative L1 to be the best ligand, which was employed under solvent-free conditions with a 1:2 Pd/ligand ratio and TBAB (20 mol-%) as additive. The study has revealed an interaction between the Pd/ligand ratio and the amount of TBAB. The established catalytic system presented a certain degree of robustness, and it has been successfully employed in the coupling of a range of aryl bromides and chlorides with different aryl siloxanes. Furthermore, both reagents were employed in an equimolecular amount, without an excess of organosilane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chiral L-prolinamides 2 containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-pyrimidinyl unit are synthesized and used as general organocatalysts for intermolecular and intramolecular aldol reactions with 1,6-hexanedioic acid as a co-catalyst under solvent-free conditions. The intermolecular reaction between ketone–aldehyde and aldehyde–aldehyde must be performed under wet conditions with catalyst (S,S)-2b at 10 °C, which affords anti-aldols with high regio-, diastereo-, and enantioselectivities. For the Hajos–Parrish–Eder–Sauer–Wiechert reaction, both diastereomers of catalyst 2 give similar results at room temperature in the absence of water to give the corresponding Wieland–Miescher ketone and derivatives. Both types of reactions were scaled up to 1 g, and the organocatalysts were recovered by extractive workup and reused without any appreciable loss in activity. DFT calculations support the stereochemical results of the intermolecular process and the bifunctional role played by the organocatalyst by providing a computational comparison of the H-bonding networks occurring with catalysts 2a and 2b.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microwave irradiation has considerably enhanced the efficiency of the asymmetric transfer hydrogenation of N-(tert-butylsulfinyl)imines in isopropyl alcohol catalyzed by a ruthenium complex bearing the achiral ligand 2-amino-2-methylpropan-1-ol. In addition to shortening reaction times for the transfer hydrogenation processes to only 30 min, the amounts of ruthenium catalyst and isopropyl alcohol can be considerably reduced in comparison with our previous procedure assisted by conventional heating, which diminishes the environmental impact of this new protocol. This methodology can be applied to aromatic, heteroaromatic and aliphatic N-(tert-butylsulfinyl)ketimines, leading, after desulfinylation, to the expected primary amines in excellent yields and with enantiomeric excesses of up to 96 %.