733 resultados para unsaturated fatty acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Wilms' tumour suppressor gene, WT1, encodes a zinc-finger protein that is mutated in Wilms' tumours and other malignancies. WT1 is one of the earliest genes expressed during kidney development. WT1 proteins can activate and repress putative target genes in vitro, although the in vivo relevance of such target genes often remains unverified. To better understand the role of WT1 in tumorigenesis and kidney development, we need to identify downstream target genes. In this study, we have expression pro. led human embryonic kidney 293 cells stably transfected to allow inducible WT1 expression and mouse mesonephric M15 cells transfected with a WT1 antisense construct to abolish endogenous expression of all WT1 isoforms to identify WT1-responsive genes. The complementary overlap between the two cell lines revealed a pronounced repression of genes involved in cholesterol biosynthesis by WT1. This pathway is transcriptionally regulated by the sterol responsive element-binding proteins (SREBPs). Here, we provide evidence that the C-terminal end of the WT1 protein can directly interact with SREBP, suggesting that WT1 may modify the transcriptional function of SREBPs via a direct protein-protein interaction. Therefore, the tumour suppressor activities of WT1 may be achieved by repressing the mevalonate pathway, thereby controlling cellular proliferation and promoting terminal differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatty acid composition of longissimus thoracis (LT) muscle and adipose tissues (subcutaneous and intermuscular fat) from castrated and entire male Boer goat bucks was investigated. Sixty Boer bucks in groups of between three and five animals were slaughtered at 5, 15, 30, 45, 60, 75, 90 and 105 kg live weight (5 and 15 kg animals were not castrated). The fatty acid composition of LT muscle from castrated and entire Boers was significantly affected by slaughter weight. The fatty acid content of LT muscle and subcutaneous and intermuscular fat from both castrated and entire Boer bucks was primarily composed of oleic acid followed by palmitic and stearic acid. Both oleic and palmitic acid increased with slaughter weight whereas stearic acid decreased. LT muscle from castrated Boer bucks contained higher amounts of desirable fatty acids. In contrast to slaughter weight, castration of Boer bucks resulted in only minor changes in fatty acid composition of adipose tissues. It can be concluded that slaughter weight plays a role in changing the fatty acid composition of LT muscle and adipose tissues from Boer bucks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonalcoholic fatty liver disease is the most common of all liver diseases. The hepatic disposition [H-3]palmitate and its low-molecular-weight metabolites in perfused normal and steatotic rat liver were studied using the multiple indicator dilution technique and a physiologically based slow diffusion/bound pharmacokinetic model. The steatotic rat model was established by administration of 17alpha-ethynylestradiol to female Wistar rats. Serum biochemistry markers and histology of treated and normal animals were assessed and indicated the presence of steatosis in the treatment group. The steatotic group showed a significantly higher alanine aminotransferase-to-aspartate aminotransferase ratio, lower levels of liver fatty acid binding protein and cytochrome P-450, as well as microvesicular steatosis with an enlargement of sinusoidal space. Hepatic extraction for unchanged [H-3]palmitate and production of low-molecular-weight metabolites were found to be significantly decreased in steatotic animals. Pharmacokinetic analysis suggested that the reduced extraction and sequestration for palmitate and its metabolites was mainly attributed to a reduction in liver fatty acid binding protein in steatosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations have been used to study the phase behavior of a dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA)/water 1:2:20 mixture in atomic detail. Starting from a random solution of DPPC and PA in water, the system adopts either a gel phase at temperatures below similar to 330 K or an inverted hexagonal phase above similar to 330 K in good agreement with experiment. It has also been possible to observe the direct transformation from a gel to an inverted hexagonal phase at elevated temperature (similar to 390 K). During this transformation, a metastable fluid lamellar intermediate is observed. Interlamellar connections or stalks form spontaneously on a nanosecond time scale and subsequently elongate, leading to the formation of an inverted hexagonal phase. This work opens the possibility of studying in detail how the formation of nonlamellar phases is affected by lipid composition and (fusion) peptides and, thus, is an important step toward understanding related biological processes, such as membrane fusion.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The effects of arachidonic acid upon the volume-sensitive Cl- current present in cultured osteoblastic cells (ROS 17/2.8) was studied using the whole-cell patch-clamp technique. 2. Arachidonate produced two distinct phases of inhibition, a rapid phase occurring within 10-15 s of application preceding a slower phase that occurred 2 min after onset of arachidonate superfusion. Accompanying the slower inhibitory phase was an acceleration of the time-dependent inactivation exhibited by the current at strongly depolarized potentials (> + 50 mV). The half-maximal inhibitory concentrations (IC50) were 177 +/- 31 and 10 +/- 4 microM for the two phases respectively. 3. Arachidonate was still effective in the presence of inhibitors of cyclo-oxygenase (indomethacin, 10 microM), lipoxygenase (nordihydroguaretic acid, 10-100 microM) and cytochrome P450 (SKF525A, 100 microM; ethoxyresorufin, 10 microM; metyrapone, 500 microM; piperonyl butoxide, 500 microM; cimetidine, 1 mM). The effects of arachidonate could not be produced by another cis unsaturated fatty acid, oleic acid. 4. Measurements of cell volume showed that arachidonate effectively inhibited the regulatory volume decrease elicited by ROS 17/2.8 cells in response to a reduction in extracellular osmolarity. 5. It is concluded that the volume-sensitive Cl- conductance in ROS 17/2.8 cells is directly modulated by arachidonate and may represent a physiological mechanism by which volume regulation can be controlled in these cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer’s disease is a neurodegenerative disorder which has been characterised with genetic (apolipoproteins), protein (ß-amyloid and tau) and lipid oxidation/metabolism alterations in its pathogenesis. In conjunction with the Dementia Research Group, Bristol University, investigation into genetic, protein and lipid oxidation in Alzheimer’s disease was conducted. A large sample cohort using the double-blind criteria, along with various clinical and chemical data sets were used to improve the statistical analysis and therefore the strength of this particular study. Bristol University completed genetic and protein analysis with lipid oxidation assays performed at Aston University. Lipid oxidation is a complex process that creates various biomarkers, from transient intermediates, to short carbon chain products and cyclic ring structures. Quantification of these products was performed on lipid extracts of donated clinical diseased and non-diseased frontal and temporal brain regions, from the Brain Bank within Frenchay Hospital. The initial unoxidised fatty acids, first transient oxidation intermediates the conjugated dienes and lipid hydroperoxides, the endpoint aldehyde biomarkers and finally the cyclic isoprostanes and neuroprostanes were determined to investigate lipid oxidation in Alzheimer’s. Antioxidant levels were also investigated to observe the effect of oxidation on the defence pathways. Assays utilised in this analysis included; fatty acid composition by GC-FID, conjugated diene levels by HPLC-UV and UV-spec, lipid hydroperoxide levels by FOX, aldehyde content by TBARs, antioxidant status by TEAC and finally isoprostane and neuroprostane quantification using a newly developed EI-MS method. This method involved the SIM of specific ions from F-ring isoprostane and neuroprostane fragmentation, which enabled EI-MS to be used for their quantification. Analyses demonstrated that there was no significant difference between control and Alzheimer samples across all the oxidation biomarkers for both brain regions. Antioxidants were the only marker that showed a clear variance; with Alzheimer samples having higher levels than the age matched controls. This unique finding is supported with the observed lower levels of lipid oxidation biomarkers in Alzheimer brain region samples. The increased antioxidant levels indicate protection against oxidation which may be a host response to counteract the oxidative pathways, but this requires further investigation. In terms of lipid oxidation, no definitive markers or target site for therapeutic intervention have been revealed. This study concludes that dietary supplementation of omega-3 fatty acids or antioxidants would most likely be ineffective against Alzheimer disease, although it may support improvement in other areas of general health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperglycaemia has a deferred detrimental effect on glucose metabolism, termed "metabolic memory". Elevated saturated fatty acids promote insulin resistance, hyperglycaemia and associated atherosclerotic complications, but their effect on "metabolic memory" is unknown. Therefore we investigated whether basal and insulin-stimulated (10(-6)M for 12h) glucose (2-deoxy-D-[(3)H]-glucose) uptake was affected by palmitate pre-treatment human THP-1 monocytes. Palmitate-induced a time-dependent and concentration-dependent inhibition of insulin-stimulated glucose uptake, showing almost complete abolition of the insulin-stimulatory effect with 300 microM palmitate. Basal glucose uptake was unaffected by palmitate. When palmitate was washed out, the inhibitory effect on insulin-stimulated glucose uptake persisted for at least 60 h.