941 resultados para synsedimentary faults


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of feasibility study of a novel concept of power system on-line collaborative voltage stability control. The proposal of the on-line collaboration between power system controllers is to enhance their overall performance and efficiency to cope with the increasing operational uncertainty of modern power systems. In the paper, the framework of proposed on-line collaborative voltage stability control is firstly presented, which is based on the deployment of multi-agent systems and real-time communication for on-line collaborative control. Then two of the most important issues in implementing the proposed on-line collaborative voltage stability control are addressed: (1) Error-tolerant communication protocol for fast information exchange among multiple intelligent agents; (2) Deployment of multi-agent systems by using graph theory to implement power system post-emergency control. In the paper, the proposed on-line collaborative voltage stability control is tested in the example 10-machine 39-node New England power system. Results of feasibility study from simulation are given considering the low-probability power system cascading faults.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sense of vision is people’s main source of information acquisition, hence the importance of a right diagnosis and correction, if necessary, of any faults for proper learning, especially in the early years of schooling. This article discusses the results of a survey of teachers in Andalusian schools that aimed at highlighting their knowledge of their students’ possible visual deficiencies, and its possible impact on school performance. The results indicate that such knowledge is generally limited to the type of refractive anomalies, and that they think that such anomalies are well treated in their students. Despite the importance they attach to these deficiencies on school learning, they think that other factors may have a greater role. They also consider that better training on this topic is necessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This brief examines the application of nonlinear statistical process control to the detection and diagnosis of faults in automotive engines. In this statistical framework, the computed score variables may have a complicated nonparametric distri- bution function, which hampers statistical inference, notably for fault detection and diagnosis. This brief shows that introducing the statistical local approach into nonlinear statistical process control produces statistics that follow a normal distribution, thereby enabling a simple statistical inference for fault detection. Further, for fault diagnosis, this brief introduces a compensation scheme that approximates the fault condition signature. Experimental results from a Volkswagen 1.9-L turbo-charged diesel engine are included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tailpipe emissions from automotive engines have been subject to steadily reducing legislative limits. This reduction has been achieved through the addition of sub-systems to the basic four-stroke engine which thereby increases its complexity. To ensure the entire system functions correctly, each system and / or sub-systems needs to be continuously monitored for the presence of any faults or malfunctions. This is a requirement detailed within the On-Board Diagnostic (OBD) legislation. To date, a physical model approach has been adopted by me automotive industry for the monitoring requirement of OBD legislation. However, this approach has restrictions from the available knowledge base and computational load required. A neural network technique incorporating Multivariant Statistical Process Control (MSPC) has been proposed as an alternative method of building interrelationships between the measured variables and monitoring the correct operation of the engine. Building upon earlier work for steady state fault detection, this paper details the use of non-linear models based on an Auto-associate Neural Network (ANN) for fault detection under transient engine operation. The theory and use of the technique is shown in this paper with the application to the detection of air leaks within the inlet manifold system of a modern gasoline engine whilst operated on a pseudo-drive cycle. Copyright © 2007 by ASME.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the application of multivariate regression techniques to the Tennessee Eastman benchmark process for modelling and fault detection. Two methods are applied : linear partial least squares, and a nonlinear variant of this procedure using a radial basis function inner relation. The performance of the RBF networks is enhanced through the use of a recently developed training algorithm which uses quasi-Newton optimization to ensure an efficient and parsimonious network; details of this algorithm can be found in this paper. The PLS and PLS/RBF methods are then used to create on-line inferential models of delayed process measurements. As these measurements relate to the final product composition, these models suggest that on-line statistical quality control analysis should be possible for this plant. The generation of `soft sensors' for these measurements has the further effect of introducing a redundant element into the system, redundancy which can then be used to generate a fault detection and isolation scheme for these sensors. This is achieved by arranging the sensors and models in a manner comparable to the dedicated estimator scheme of Clarke et al. 1975, IEEE Trans. Pero. Elect. Sys., AES-14R, 465-473. The effectiveness of this scheme is demonstrated on a series of simulated sensor and process faults, with full detection and isolation shown to be possible for sensor malfunctions, and detection feasible in the case of process faults. Suggestions for enhancing the diagnostic capacity in the latter case are covered towards the end of the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small salient-pole machines, in the range 30 kVA to 2 MVA, are often used in distributed generators, which in turn are likely to form the major constituent of power generation in power system islanding schemes or microgrids. In addition to power system faults, such as short-circuits, islanding contains an inherent risk of out-of-synchronism re-closure onto the main power system. To understand more fully the effect of these phenomena on a small salient-pole alternator, the armature and field currents from tests conducted on a 31.5 kVA machine are analysed. This study demonstrates that by resolving the voltage difference between the machine terminals and bus into direct and quadrature axis components, interesting properties of the transient currents are revealed. The presence of saliency and short time-constants cause intriguing differences between machine events such as out-of-phase synchronisations and sudden three-phase short-circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the application of an improved nonlinear principal component analysis (PCA) to the detection of faults in polymer extrusion processes. Since the processes are complex in nature and nonlinear relationships exist between the recorded variables, an improved nonlinear PCA, which incorporates the radial basis function (RBF) networks and principal curves, is proposed. This algorithm comprises two stages. The first stage involves the use of the serial principal curve to obtain the nonlinear scores and approximated data. The second stage is to construct two RBF networks using a fast recursive algorithm to solve the topology problem in traditional nonlinear PCA. The benefits of this improvement are demonstrated in the practical application to a polymer extrusion process.