959 resultados para symmetric matrices
Resumo:
The stable similarity reduction of a nonsymmetric square matrix to tridiagonal form has been a long-standing problem in numerical linear algebra. The biorthogonal Lanczos process is in principle a candidate method for this task, but in practice it is confined to sparse matrices and is restarted periodically because roundoff errors affect its three-term recurrence scheme and degrade the biorthogonality after a few steps. This adds to its vulnerability to serious breakdowns or near-breakdowns, the handling of which involves recovery strategies such as the look-ahead technique, which needs a careful implementation to produce a block-tridiagonal form with unpredictable block sizes. Other candidate methods, geared generally towards full matrices, rely on elementary similarity transformations that are prone to numerical instabilities. Such concomitant difficulties have hampered finding a satisfactory solution to the problem for either sparse or full matrices. This study focuses primarily on full matrices. After outlining earlier tridiagonalization algorithms from within a general framework, we present a new elimination technique combining orthogonal similarity transformations that are stable. We also discuss heuristics to circumvent breakdowns. Applications of this study include eigenvalue calculation and the approximation of matrix functions.
Resumo:
The effect of postcure high energy (gamma), ultraviolet (UV) and thermal treatment on the properties of polyester-melamine clearcoats of a range of compositions has been investigated. Two initial cure conditions were used, of which one was '' optimally '' cured and the other undercured. It was found that postcure treatments, particularly gamma and UV, led to coatings of similar mechanical and thermal properties irrespective of initial cure, although the change in properties on postcure treatment was greater for the under-cured samples. The results were interpreted in terms of the effect of the treatments on the structure of the crosslinked matrices. The study suggests the possibility of the development of a dual-cure process for polyester-melamines, whereby cure optimization and property improvement can be achieved. This could also be used to '' correct '' for small variations in thermal cure levels brought about by adventitious online fluctuations in cure oven conditions.
Resumo:
We evaluated the hydrodynamic performance of kangaroo aortic valve matrices (KMs) (19, 21, and 23 mm), as potential scaffolds in tissue valve engineering using a pulsatile left heart model at low and high cardiac outputs (COs) and heart rates (HRs) of 60 and 90 beats/min. Data were measured in two samples of each type, pooled in two CO levels (2.1 +/- 0.7 and 4.2 +/- 0.6 L/min; mean +/- standard errors on the mean), and analyzed using analysis of variance with CO level, HR, and valve type as fixed factors and compared to similar porcine matrices (PMs). Transvalvular pressure gradient (Delta P) was a function of HR (P < 0.001) and CO (P < 0.001) but not of valve type (P = 0.39). Delta P was consistently lower in KMs but not significantly different from PMs. The effective orifice area and performance index of kangaroo matrices was statistically larger for all sizes at both COs and HRs.
Resumo:
We construct the Drinfeld twists (or factorizing F-matrices) of the supersymmetric model associated with quantum superalgebra U-q(gl(m vertical bar n)), and obtain the completely symmetric representations of the creation operators of the model in the F-basis provided by the F-matrix. As an application of our general results, we present the explicit expressions of the Bethe vectors in the F-basis for the U-q(gl(2 vertical bar 1))-model (the quantum t-J model).
Dual-symmetric Lagrangians in quantum electrodynamics: I. Conservation laws and multi-polar coupling
Resumo:
By using a complex field with a symmetric combination of electric and magnetic fields, a first-order covariant Lagrangian for Maxwell's equations is obtained, similar to the Lagrangian for the Dirac equation. This leads to a dual-symmetric quantum electrodynamic theory with an infinite set of local conservation laws. The dual symmetry is shown to correspond to a helical phase, conjugate to the conserved helicity. There is also a scaling symmetry, conjugate to the conserved entanglement. The results include a novel form of the photonic wavefunction, with a well-defined helicity number operator conjugate to the chiral phase, related to the fundamental dual symmetry. Interactions with charged particles can also be included. Transformations from minimal coupling to multi-polar or more general forms of coupling are particularly straightforward using this technique. The dual-symmetric version of quantum electrodynamics derived here has potential applications to nonlinear quantum optics and cavity quantum electrodynamics.
Resumo:
We review the recent progress on the construction of the determinant representations of the correlation functions for the integrable supersymmetric fermion models. The factorizing F-matrices (or the so-called F-basis) play an important role in the construction. In the F-basis, the creation (and the annihilation) operators and the Bethe states of the integrable models are given in completely symmetric forms. This leads to the determinant representations of the scalar products of the Bethe states for the models. Based on the scalar products, the determinant representations of the correlation functions may be obtained. As an example, in this review, we give the determinant representations of the two-point correlation function for the U-q(gl(2 vertical bar 1)) (i.e. q-deformed) supersymmetric t-J model. The determinant representations are useful for analyzing physical properties of the integrable models in the thermodynamical limit.
Resumo:
We consider the problems of computing the power and exponential moments EXs and EetX of square Gaussian random matrices X=A+BWC for positive integer s and real t, where W is a standard normal random vector and A, B, C are appropriately dimensioned constant matrices. We solve the problems by a matrix product scalarization technique and interpret the solutions in system-theoretic terms. The results of the paper are applicable to Bayesian prediction in multivariate autoregressive time series and mean-reverting diffusion processes.
Resumo:
We have recently introduced the concept of whole-body asymmetric MRI systems [1]. In this theoretical study, we investigate the PNS characteristics of whole-body asymmetric gradient systems as compared to conventional symmetric systems. Recent experimental evidence [2] supports the hypothesis of transverse gradients being the largest contributor of PNS due to induced electric currents. Asymmetric head gradient coils have demonstrated benefits in the past [3]. The numerical results are based on an anatomically-accurate 2mm-human voxel-phantom NORMAN [4]. The results of this study can facilitate the optimization of whole-body asymmetric gradients in terms of patient comfort/safety (less PNS), while prospering the use of asymmetric MRI systems for in-vivo medical interventions.
Resumo:
Software simulation models are computer programs that need to be verified and debugged like any other software. In previous work, a method for error isolation in simulation models has been proposed. The method relies on a set of feature matrices that can be used to determine which part of the model implementation is responsible for deviations in the output of the model. Currrently these feature matrices have to be generated by hand from the model implementation, which is a tedious and error-prone task. In this paper, a method based on mutation analysis, as well as prototype tool support for the verification of the manually generated feature matrices is presented. The application of the method and tool to a model for wastewater treatment shows that the feature matrices can be verified effectively using a minimal number of mutants.
Resumo:
Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel noise models.