994 resultados para simple algorithms
Resumo:
Carbapenemases should be accurately and rapidly detected, given their possible epidemiological spread and their impact on treatment options. Here, we developed a simple, easy and rapid matrix-assisted laser desorption ionization-time of flight (MALDI-TOF)-based assay to detect carbapenemases and compared this innovative test with four other diagnostic approaches on 47 clinical isolates. Tandem mass spectrometry (MS-MS) was also used to determine accurately the amount of antibiotic present in the supernatant after 1 h of incubation and both MALDI-TOF and MS-MS approaches exhibited a 100% sensitivity and a 100% specificity. By comparison, molecular genetic techniques (Check-MDR Carba PCR and Check-MDR CT103 microarray) showed a 90.5% sensitivity and a 100% specificity, as two strains of Aeromonas were not detected because their chromosomal carbapenemase is not targeted by probes used in both kits. Altogether, this innovative MALDI-TOF-based approach that uses a stable 10-μg disk of ertapenem was highly efficient in detecting carbapenemase, with a sensitivity higher than that of PCR and microarray.
Resumo:
Although the molecular typing of Pseudomonas aeruginosa is important to understand the local epidemiology of this opportunistic pathogen, it remains challenging. Our aim was to develop a simple typing method based on the sequencing of two highly variable loci. Single-strand sequencing of three highly variable loci (ms172, ms217, and oprD) was performed on a collection of 282 isolates recovered between 1994 and 2007 (from patients and the environment). As expected, the resolution of each locus alone [number of types (NT) = 35-64; index of discrimination (ID) = 0.816-0.964] was lower than the combination of two loci (NT = 78-97; ID = 0.966-0.971). As each pairwise combination of loci gave similar results, we selected the most robust combination with ms172 [reverse; R] and ms217 [R] to constitute the double-locus sequence typing (DLST) scheme for P. aeruginosa. This combination gave: (i) a complete genotype for 276/282 isolates (typability of 98%), (ii) 86 different types, and (iii) an ID of 0.968. Analysis of multiple isolates from the same patients or taps showed that DLST genotypes are generally stable over a period of several months. The high typability, discriminatory power, and ease of use of the proposed DLST scheme makes it a method of choice for local epidemiological analyses of P. aeruginosa. Moreover, the possibility to give unambiguous definition of types allowed to develop an Internet database ( http://www.dlst.org ) accessible by all.
Resumo:
Each year, approximately five million people die worldwide from putatively vaccine-preventable mucosally transmitted diseases. With respect to mass vaccination campaigns, one strategy to cope with this formidable challenge is aerosol vaccine delivery, which offers potential safety, logistical, and cost-saving advantages over traditional vaccination routes. Additionally, aerosol vaccination may elicit pivotal mucosal immune responses that could contain or eliminate mucosally transmitted pathogens in a preventative or therapeutic vaccine context. In this current preclinical non-human primate investigation, we demonstrate the feasibility of aerosol vaccination with the recombinant poxvirus-based vaccine vectors NYVAC and MVA. Real-time in vivo scintigraphy experiments with radiolabeled, aerosol-administered NYVAC-C (Clade C, HIV-1 vaccine) and MVA-HPV vaccines revealed consistent mucosal delivery to the respiratory tract. Furthermore, aerosol delivery of the vaccines was safe, inducing no vaccine-associated pathology, in particular in the brain and lungs, and was immunogenic. Administration of a DNA-C/NYVAC-C prime/boost regime resulted in both systemic and anal-genital HIV-specific immune responses that were still detectable 5 months after immunization. Thus, aerosol vaccination with NYVAC and MVA vectored vaccines constitutes a tool for large-scale vaccine efforts against mucosally transmitted pathogens.
Resumo:
Accurate prediction of transcription factor binding sites is needed to unravel the function and regulation of genes discovered in genome sequencing projects. To evaluate current computer prediction tools, we have begun a systematic study of the sequence-specific DNA-binding of a transcription factor belonging to the CTF/NFI family. Using a systematic collection of rationally designed oligonucleotides combined with an in vitro DNA binding assay, we found that the sequence specificity of this protein cannot be represented by a simple consensus sequence or weight matrix. For instance, CTF/NFI uses a flexible DNA binding mode that allows for variations of the binding site length. From the experimental data, we derived a novel prediction method using a generalised profile as a binding site predictor. Experimental evaluation of the generalised profile indicated that it accurately predicts the binding affinity of the transcription factor to natural or synthetic DNA sequences. Furthermore, the in vitro measured binding affinities of a subset of oligonucleotides were found to correlate with their transcriptional activities in transfected cells. The combined computational-experimental approach exemplified in this work thus resulted in an accurate prediction method for CTF/NFI binding sites potentially functioning as regulatory regions in vivo.
Resumo:
We show how nonlinear embedding algorithms popular for use with shallow semi-supervised learning techniques such as kernel methods can be applied to deep multilayer architectures, either as a regularizer at the output layer, or on each layer of the architecture. This provides a simple alternative to existing approaches to deep learning whilst yielding competitive error rates compared to those methods, and existing shallow semi-supervised techniques.
Resumo:
OBJECTIVE: Accuracy studies of Patient Safety Indicators (PSIs) are critical but limited by the large samples required due to low occurrence of most events. We tested a sampling design based on test results (verification-biased sampling [VBS]) that minimizes the number of subjects to be verified. METHODS: We considered 3 real PSIs, whose rates were calculated using 3 years of discharge data from a university hospital and a hypothetical screen of very rare events. Sample size estimates, based on the expected sensitivity and precision, were compared across 4 study designs: random and VBS, with and without constraints on the size of the population to be screened. RESULTS: Over sensitivities ranging from 0.3 to 0.7 and PSI prevalence levels ranging from 0.02 to 0.2, the optimal VBS strategy makes it possible to reduce sample size by up to 60% in comparison with simple random sampling. For PSI prevalence levels below 1%, the minimal sample size required was still over 5000. CONCLUSIONS: Verification-biased sampling permits substantial savings in the required sample size for PSI validation studies. However, sample sizes still need to be very large for many of the rarer PSIs.
Resumo:
Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.
Resumo:
Comprend : Rapport sur la méthode pasigraphique de M. Jônain, présenté à la Société philomathique de Bordeaux
Resumo:
Many research projects in life sciences require purified biologically active recombinant protein. In addition, different formats of a given protein may be needed at different steps of experimental studies. Thus, the number of protein variants to be expressed and purified in short periods of time can expand very quickly. We have therefore developed a rapid and flexible expression system based on described episomal vector replication to generate semi-stable cell pools that secrete recombinant proteins. We cultured these pools in serum-containing medium to avoid time-consuming adaptation of cells to serum-free conditions, maintain cell viability and reuse the cultures for multiple rounds of protein production. As such, an efficient single step affinity process to purify recombinant proteins from serum-containing medium was optimized. Furthermore, a series of multi-cistronic vectors were designed to enable simultaneous expression of proteins and their biotinylation in vivo as well as fast selection of protein-expressing cell pools. Combining these improved procedures and innovative steps, exemplified with seven cytokines and cytokine receptors, we were able to produce biologically active recombinant endotoxin free protein at the milligram scale in 4-6weeks from molecular cloning to protein purification.
Resumo:
El estudio propone un modelo simple de persistencia de herbicidas en el suelo basado en una serie de modificaciones al modelo desarrollado por Walker & Barnes. El modelo que se propone simula la degradación diaria de un herbicida en el suelo, a través del funcionamiento de tres submodelos: a) submodelo que estima la temperatura del suelo, b) submodelo del cálculo del contenido de humedad del suelo y c) submodelo que calcula la degradación del producto. Se entrega una descripción teórica de las modificaciones introducidas al modelo y un detalle del programa computacional en lenguaje BASIC. Se hizo una validación independiente de cada uno de los submodelos modificados y se concluye que todos ellos mejoran su eficiencia de predicción respecto al modelo original. La validación del submodelo de degradación se realizó utilizando información obtenida en campo en dos suelos diferentes de los herbicidas metsulfuron-metil y triasulfuron. Finalmente se concluye que el modelo propuesto sería eficiente en la simulación de la persistencia de estas sulfonilureas en el suelo, utilizando una cinética de primer grado para metsulfuron-metil y una de segundo grado para triasulfuron.