753 resultados para security in wireless sensor networks
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. It provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to maintain as much as flexibility as possible while meeting specific applications requirements. EMMON has been validated through extensive analytical, simulation and experimental evaluations, including through a 300+ nodes test-bed the largest single-site WSN test-bed in Europe.
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective, feasible and usable system architectures that address both functional and non-functional requirements in an integrated fashion. In this paper, we outline the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to use standard commercially-available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. The EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
The utilization bound of non-preemptive rate-monotonic scheduling in controller area networks is 25%
Resumo:
Consider a distributed computer system comprising many computer nodes, each interconnected with a controller area network (CAN) bus. We prove that if priorities to message streams are assigned using rate-monotonic (RM) and if the requested capacity of the CAN bus does not exceed 25% then all deadlines are met.
Resumo:
The IEEE 802.15.4 is the most widespread used protocol for Wireless Sensor Networks (WSNs) and it is being used as a baseline for several higher layer protocols such as ZigBee, 6LoWPAN or WirelessHART. Its MAC (Medium Access Control) supports both contention-free (CFP, based on the reservation of guaranteed time-slots GTS) and contention based (CAP, ruled by CSMA/CA) access, when operating in beacon-enabled mode. Thus, it enables the differentiation between real-time and best-effort traffic. However, some WSN applications and higher layer protocols may strongly benefit from the possibility of supporting more traffic classes. This happens, for instance, for dense WSNs used in time-sensitive industrial applications. In this context, we propose to differentiate traffic classes within the CAP, enabling lower transmission delays and higher success probability to timecritical messages, such as for event detection, GTS reservation and network management. Building upon a previously proposed methodology (TRADIF), in this paper we outline its implementation and experimental validation over a real-time operating system. Importantly, TRADIF is fully backward compatible with the IEEE 802.15.4 standard, enabling to create different traffic classes just by tuning some MAC parameters.
Resumo:
The IEEE 802.15.4/Zigbee protocols are a promising technology for Wireless Sensor Networks (WSNs). This paper shares our experience on the implementation and use of these protocols and related technologies in WSNs. We present problems and challenges we have been facing in implementing an IEEE 802.15.4/ZigBee stack for TinyOS in a two-folded perspective: IEEE 802.15.4/ZigBee protocol standards limitations (ambiguities and open issues) and technological limitations (hardware and software). Concerning the former, we address challenges for building scalable and synchronized multi-cluster ZigBee networks, providing a trade-off between timeliness and energy-efficiency. On the latter issue, we highlight implementation problems in terms of hardware, timer handling and operating system limitations. We also report on our experience from experimental test-beds, namely on physical layer aspects such as coexistence problems between IEEE 802.15.4 and 802.11 radio channels.
Resumo:
Radio frequency (RF) energy harvesting is an emerging technology that will enable to drive the next generation of wireless sensor networks (WSNs) without the need of using batteries. In this paper, we present RF energy harvesting circuits specifically developed for GSM bands (900/1800) and a wearable dual-band antenna suitable for possible implementation within clothes for body worn applications. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with match impedance circuit) responsible for harvesting the RF energy. Different printed circuit board (PCB) fabrication techniques to produce the prototypes result in different values of conversion efficiency. Therefore, we conclude that if the PCB fabrication is achieved by means of a rigorous control in the photo-positive method and chemical bath procedure applied to the PCB it allows for attaining better values for the conversion efficiency. All three prototypes (1, 2 and 3) can power supply the IRIS sensor node for RF received powers of -4 dBm, -6 dBm and -5 dBm, and conversion efficiencies of 20, 32 and 26%, respectively. © 2014 IEEE.
Resumo:
This report describes the development of a Test-bed Application for the ART-WiSe Framework with the aim of providing a means of access, validate and demonstrate that architecture. The chosen application is a kind of pursuit-evasion game where a remote controlled robot, navigating through an area covered by wireless sensor network (WSN), is detected and continuously tracked by the WSN. Then a centralized control station takes the appropriate actions for a pursuit robot to chase and “capture” the intruder one. This kind of application imposes stringent timing requirements to the underlying communication infrastructure. It also involves interesting research problems in WSNs like tracking, localization, cooperation between nodes, energy concerns and mobility. Additionally, it can be easily ported into a real-world application. Surveillance or search and rescue operations are two examples where this kind of functionality can be applied. This is still a first approach on the test-bed application and this development effort will be continuously pushed forward until all the envisaged objectives for the Art-WiSe architecture become accomplished.
Resumo:
This paper provides a review of antennas applied for indoor positioning or localization systems. The desired requirements of those antennas when integrated in anchor nodes (reference nodes) are discussed, according to different localization techniques and their performance. The described antennas will be subdivided into the following sections according to the nature of measurements: received signal strength (RSS), time of flight (ToF), and direction of arrival (DoA). This paper intends to provide a useful guide for antenna designers who are interested in developing suitable antennas for indoor localization systems.
Resumo:
A pentagonal patch-excited sectorized antenna (SA) suitable for 2.4-2.5 GHz localization systems was studied and developed. The integration of six patch-excited structures converges into a sectorized antenna called Hive5 that provides gain improvement compared to a patch antenna, maximum variation of 3 dB beam width over the radiation pattern and circular polarization (CP). This antenna is presented and analyzed taking into account the tap length and the flare angle. The proposed antenna in combination with a RF-Switch provides a cost effective solution for localization based on Wireless Sensor Networks (WSN) and will be used for implementing angle of arrival (AoA) techniques combined with RF fingerprinting techniques.
Resumo:
Nos últimos anos, o avanço da tecnologia e a miniaturização de diversos componentes de electrónica associados a novos conceitos têm permitido nascer novas ideias e projectos, que até há alguns anos não passariam de ficção científica. Talvez o exemplo mais acabado seja actualmente o smartphone, um pequeno bloco de hardware e software, com capacidade de processamento que ultrapassa várias vezes o dos computadores com uma dúzia de anos. Estas capacidades têm sido utilizadas em comunicações, blocos de notas, agendas e até entretenimento. No entanto, podem ser reutilizadas para ajudar a resolver algumas limitações/constrangimentos da actualidade. Dentro destes destacam-se a gestão de recursos escassos. Com efeito, o consumo de energia eléctrica tem aumentado como consequência directa do desenvolvimento global e aumento do número de aparelhos eléctricos. Uma percentagem significativa de energia eléctrica tem sido produzida através de recursos não-renováveis de energia. No entanto, a dependência energética, associada à subida de preços e a redução das emissões de gases do efeito estufa, estimula o desenvolvimento de novas soluções que permitam lidar com esta situação. O desempenho energético por sua vez depende não só das características da estrutura, mas também do comportamento do utilizador. O desempenho energético dos edifícios é muito importante, uma vez que os respectivos consumos são responsáveis por mais de metade do total da energia produzida. Desta forma, a fim de alcançar um melhor desempenho é importante não só considerar o desempenho de estrutura, mas também monitorizar o comportamento do utilizador. Esta última questão coloca várias limitações, uma vez que depende muito do tipo de utilizador. Um dos conceitos actuais emergentes são as chamadas redes de sensores sem fio. Com esta tecnologia, pequenos módulos podem ser desenvolvidos com muitas possibilidades de conectividade, com elevado poder de processamento e com grande autonomia, sem serem excessivamente caros. Isto proporciona os meios para implementar vários dispositivos em toda a instalação, para recolher uma variedade de dados, sendo posteriormente armazenados num servidor. Os blocos fundamentais da infra-estrutura de sensores do projecto foram concebidos na Evoleo Technologies em simultâneo com o decorrer do estágio. Estes blocos recolhem dados específicos na instalação, e periodicamente enviam para o servidor central os valores recolhidos, onde são armazenados e colocados à disposição do utilizador. Os dados recolhidos podem então ser apresentados ao utilizador, proporcionando um registo de consumo de energia associado a um dado período de tempo. Uma vez que todos os dados são armazenados no servidor, podem ser efectuados estudos para determinar o uso típico, possíveis problemas em aparelhos, a qualidade da energia eléctrica, etc., permitindo determinar onde a energia está a ser eventualmente desperdiçada e fornecendo dados ao utilizador para que este possa proceder a alterações, tendo por base dados recolhidos num dado período. O objectivo principal deste trabalho passa por estabelecer a ligação entre o nível máquina e o nível de utilizador, isto é, uma plataforma de interacção entre dispositivos e administrador da instalação. Fornecer os dados de uma forma fácil e sem necessidade de instalação de software específico em cada dispositivo que se pretenda utilizar para monitorizar foi uma das principais preocupações das fases de concepção do projecto.
Resumo:
Innovation is considered crucial for enterprises survival and current economic environment demands the best ways of achieving it. However, the development of complex products and services require the utilization of diverse know-how and technology, which enterprises may not hold. An effective strategy for achieving them is to rely in open innovation. Still, open innovation projects may fail for many causes, e.g. due to the dynamics of collaboration between partners. To effectively benefit from open innovation, it is recommended the utilization of adequate risk models. For achieving such models, a preliminary conceptualization of open innovation and risk is necessary, which includes modeling experiments with existing risk models, such as the FMEA.
Resumo:
Most of distribution generation and smart grid research works are dedicated to the study of network operation parameters, reliability among others. However, many of this research works usually uses traditional test systems such as IEEE test systems. This work proposes a voltage magnitude study in presence of fault conditions considering the realistic specifications found in countries like Brazil. The methodology considers a hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzyprobabilistic models and a remedial action algorithm which is based on optimal power flow. To illustrate the application of the proposed method, the paper includes a case study that considers a real 12 bus sub-transmission network.
Resumo:
Most of distributed generation and smart grid research works are dedicated to network operation parameters studies, reliability, etc. However, many of these works normally uses traditional test systems, for instance, IEEE test systems. This paper proposes voltage magnitude and reliability studies in presence of fault conditions, considering realistic conditions found in countries like Brazil. The methodology considers a hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models and a remedial action algorithm which is based on optimal power flow. To illustrate the application of the proposed method, the paper includes a case study that considers a real 12-bus sub-transmission network.
Resumo:
Nowadays, data centers are large energy consumers and the trend for next years is expected to increase further, considering the growth in the order of cloud services. A large portion of this power consumption is due to the control of physical parameters of the data center (such as temperature and humidity). However, these physical parameters are tightly coupled with computations, and even more so in upcoming data centers, where the location of workloads can vary substantially due, for example, to workloads being moved in the cloud infrastructure hosted in the data center. Therefore, managing the physical and compute infrastructure of a large data center is an embodiment of a Cyber-Physical System (CPS). In this paper, we describe a data collection and distribution architecture that enables gathering physical parameters of a large data center at a very high temporal and spatial resolution of the sensor measurements. We think this is an important characteristic to enable more accurate heat-flow models of the data center and with them, find opportunities to optimize energy consumptions. Having a high-resolution picture of the data center conditions, also enables minimizing local hot-spots, perform more accurate predictive maintenance (failures in all infrastructure equipments can be more promptly detected) and more accurate billing. We detail this architecture and define the structure of the underlying messaging system that is used to collect and distribute the data. Finally, we show the results of a preliminary study of a typical data center radio environment.
Multi-criteria optimisation approach to increase the delivered power in radial distribution networks
Resumo:
This study proposes a new methodology to increase the power delivered to any load point in a radial distribution network, through the identification of new investments in order to improve the repair time. This research work is innovative and consists in proposing a full optimisation model based on mixed-integer non-linear programming considering the Pareto front technique. The goal is to achieve a reduction in repair times of the distribution networks components, while minimising the costs of that reduction as well as non-supplied energy costs. The optimisation model considers the distribution network technical constraints, the substation transformer taps, and it is able to choose the capacitor banks size. A case study based on a 33-bus distribution network is presented in order to illustrate in detail the application of the proposed methodology.