986 resultados para seafloor hydrothermal sulfides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A suite of conjugate pore fluid and sediment samples were collected during Leg 169 of the ODP from within the clastic sedimentary sequences which host massive sulphides at Central Hill, Escanaba Trough (ODP Site 1038). We report the alkali element and boron, and Li and B isotope data for these samples. Relative to a reference site (Site 1037) located outside the zone of high heat flow, pore fluids from Site 1038 show a wide variation in Cl (300-800 mM), and have far higher concentrations of Li (up to 6.2 mM), B (up to 9.7 mM), Cs (up to 5.0 mM), and Rb (up to 97 mM). We show that the pore fluids are derived from hydrothermal circulation that has extended into the basement oceanic crust, with input of the alkali elements and B as the rising hydrothermal fluids interact geochemically with the overlying clastic sediments. There is, however, no marked depletion of these elements in the conjugate sediments, suggesting that there has been advective transport of fluids away from the primary hydrothermal reaction site. This is supported by modelling of the Li and B isotope systematics of the pore fluids, which shows that they record extensive formation of secondary minerals during cooling of the fluids from ~350 to ~20ºC. Precipitation of metal-rich sulphides would have occurred prior to the formation of these minerals, thus, the pore fluid Li and B isotope data can place important constraints on the locus of sulphide deposition beneath the seafloor at Escanaba.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultramafic-hosted Logatchev hydrothermal field (LHF) is characterized by vent fluids, which are enriched in dissolved hydrogen and methane compared with fluids from basalt-hosted systems. Thick sediment layers in LHF are partly covered by characteristic white mats. In this study, these sediments were investigated in order to determine biogeochemical processes and key organisms relevant for primary production. Temperature profiling at two mat-covered sites showed a conductive heating of the sediments. Elemental sulfur was detected in the overlying mat and metal-sulfides in the upper sediment layer. Microprofiles revealed an intensive hydrogen sulfide flux from deeper sediment layers. Fluorescence in situ hybridization showed that filamentous and vibrioid, Arcobacter-related Epsilonproteobacteria dominated the overlying mats. This is in contrast to sulfidic sediments in basalt-hosted fields where mats of similar appearance are composed of large sulfur-oxidizing Gammaproteobacteria. Epsilonproteobacteria (7- 21%) and Deltaproteobacteria (20-21%) were highly abundant in the surface sediment layer. The physiology of the closest cultivated relatives, revealed by comparative 16S rRNA sequence analysis, was characterized by the capability to metabolize sulfur com- ponents. High sulfate reduction rates as well as sulfide depleted in 34S further confirmed the importance of the biogeochemical sulfur cycle. In contrast, methane was found to be of minor relevance for microbial life in mat-covered surface sediments. Our data indicate that in conductively heated surface sediments microbial sulfur cycling is the driving force for bacterial biomass production although ultramafic- hosted systems are characterized by fluids with high levels of dissolved methane and hydrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrothermal emission of mantle helium appears to be directly related to magma production rate, but other processes can generate methane and hydrogen on mid-ocean ridges. In an on-going effort to characterize these processes in the South Atlantic, the flux and distribution of these gases were investigated in the vicinity of a powerful black smoker recently discovered at 8°17.9' S, 13°30.4' W. The vent lies on the shoulder of an oblique offset in the Mid-Atlantic Ridge and discharges high concentrations of methane and hydrogen. Measurements during expeditions in 2004 and 2006 show that the ratio of CH4 to 3He in the neutrally buoyant plume is quite high, 4 x 10**8. The CTD stations were accompanied by velocity measurements with lowered acoustic Doppler current profilers (LADCP), and from these data we estimate the methane transport to have been 0.5 mol/sec in a WSW-trending plume that seems to develop during the ebb tidal phase. This transport is an order of magnitude greater than the source of CH4 calculated from its concentration in the vent fluid and the rise height of the plume. From this range of methane fluxes, the source of 3He is estimated to be between 0.14 and 1.2 nmol/sec. In either case, the 3He source is significantly lower than expected from the spreading rate of the Mid-Atlantic Ridge. From the inventory of methane in the rift valley adjacent to the vent, it appears that the average specific rate of oxidation is 2.6 to 23/yr, corresponding to a turnover time between 140 and 16 days. Vertical profiles of methane in the surrounding region often exhibited Gaussian-like distributions, and the variances appear to increase with distance from the vent. Using a Gaussian plume model, we obtained a range of vertical eddy diffusivities between 0.009 and 0.08 m2m2/sec. These high values may be due to tidally driven internal waves across the promontory on which the vent is located.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of lead distribution in recent, ancient Black Sea and Neweuxinian bottom sediment shows similar vertical distributions of the element in the oxygen and hydrogen sulfide zones of the sea; i.e. hydrogen sulfide contamination does not affect lead contents in bottom sediments of the sea. Lead distribution in sediment mass of the Black Sea reflects dependence of accumulation of the element on the hydrodynamic regime of the sea and forms of its migration. It is noted that absence of lead accumulation in Black Sea nodules results from specific nodule formation and from geochemical activity of the element. A large role of diagenetic sulfide formation in lead geochemistry is shown. Degree of lead accumulation in iron sulfides depends on conditions of sedimentation and on physical and chemical parameters in the sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The R/V METEOR cruise M60/3 took place from January 13 through February 14, 2004. Target area was the Logatchev hydrothermal field situated on the Mid-Atlantic Ridge (MAR) with main spots around 14°45'N and 44°59'W and 14°55'N and 44°55'W. The active Logatchev hydrothermal field lies on a small plateau on the eastern flank of the inner rift valley in 2900 m to 3060 m water depth. It is characterized by sites of active, high-T fluid emanation and sulfide precipitation as well as by inactive sites. CTD data for 17 stations located in the vicinity of the Logatchev hydrothermal field were recorded using a SEABIRD CTD Type 911, mostly for the entire water column. CTD sensors had been calibrated by SEABIRD directly before the cruise; additional calibrations of the data obtained, e.g. by salinometer measurements of selected samples were not accomplished. For most stations, no indication of hydrothermal plumes could be identified within the CTD-profiles. An exception is station M60/3-37-CTD-R for which the S/T plot evidences the intrusion of a component relatively depleted in salinity for the depth area from 2600m to 2700m water depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbonate-free metalliferous fraction of thirty-nine sediment samples from four DSDP Leg 92 sites has been analyzed for 12 elements, and a subset of 16 samples analyzed for Pb isotopic composition. The main geochemical features of this component are as follows: i) very high concentrations of Fe and Mn, typically 25-39% and 5-14%, respectively; ii) Al and Ca contents generally less than 2% and 5%, respectively; iii) high Cu (1000-2000 ppm), and Zn and Ni (500-1000 ppm) values; and iv) Co and Pb concentrations of 100-250 ppm. In terms of element partitioning within the metalliferous fraction, amorphous to poorly crystallized oxide-oxyhydroxides removed by the second leach carry virtually all of the Mn, and about 90% of the Ca, Sr and Ni. The well-crystallized goethite-rich material removed by the third leach carries the majority of Fe, Cu, and Pb. These relations hold for sediments as young as ~1-2 Ma, indicating early partitioning of hydrothermal Fe and Mn into separate phases. Calculated mass accumulation rates (MAR) for Fe, Mn, Cu, Pb, Zn and Ni in the bulk sediment show the same overall trends at three of the sites, with greatest MAR values near the basement, and a general decrease in MAR values towards the tops of the holes (for sediments deposited above the lysocline). These relations strongly support the concept of a declining hydrothermal contribution of these elements away from a ridge axis. Nevertheless, MAR values for these metals up to ~200 km from the ridge axis are orders of magnitude higher than on abyssal seafloor plains where there is no hydrothermal influence. Mn/Fe ratios throughout the sediment column at two sites indicate that the composition of the hydrothermal precipitates changed during transport through seawater, becoming significantly depleted in Mn beyond ~200-300 km from the axis, but maintaining roughly the same proportion of Fe. Most of the Pb isotope data for the Leg 92 metalliferous sediments form approximately linear arrays in the conventional isotopic plots, extending from the middle of the field for mid-ocean ridge basalts toward the field for Mn nodules. The array of data lying between these two end-members is most readily interpreted in terms of simple linear mixing of Pb derived from basaltic and seawater end-member sources. The least radiogenic sediments reflect the average Pb isotope composition of discharging hydrothermal solutions and ocean-ridge basalt at the EPR over the ~4-8 Ma B.P. interval. Pb in sediments deposited up to 250 km from the axis can be almost entirely of basaltic-hydrothermal origin. Lateral transport of some basaltic Pb by ocean currents appears to extend to distances of at least 1000 km west of the East Pacific Rise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterozoan carbonates are typical for extratropical sedimentary systems. However, under mesotrophic to eutrophic conditions, heterozoan carbonates also form in tropical settings. Nevertheless, such heterozoan tropical sedimentary systems are rare in the modern world and therefore are only poorly understood to date. Here a carbonate depositional system is presented where nutrient-rich upwelling waters push onto a wide shelf. These waters warm up in the shelf, giving rise to the production and deposition of tropical heterozoan facies. The carbonate facies on this shelf are characterized by a mixture of tropical and cosmopolitan biogenic sedimentary grains. Study of facies and taxonomy are the key for identifying and characterizing tropical heterozoan carbonates and for distinguishing them from their coolwater counterparts, in particular in the past where the oceanography cannot be determined directly.