903 resultados para poly glutamic acid film
Resumo:
Pós-graduação em Química - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated destruction of pancreatic beta cells, resulting in insulin deficiency and hyperglycaemia. Recent studies have described that apoptosis impairment during central and peripheral tolerance is involved in T1D pathogenesis. In this study, the apoptosis-related gene expression in T1D patients was evaluated before and after treatment with high-dose immunosuppression followed by autologous haematopoietic stem cell transplantation (HDI-AHSCT). We also correlated gene expression results with clinical response to HDI-AHSCT. We observed a decreased expression of bad, bax and fasL pro-apoptotic genes and an increased expression of a1, bcl-xL and cIAP-2 anti-apoptotic genes in patients' peripheral blood mononuclear cells (PBMCs) compared to controls. After HDI-AHSCT, we found an up-regulation of fas and fasL and a down-regulation of anti-apoptotic bcl-xL genes expression in post-HDI-AHSCT periods compared to pre-transplantation. Additionally, the levels of bad, bax, bok, fasL, bcl-xL and cIAP-1 genes expression were found similar to controls 2 years after HDI-AHSCT. Furthermore, over-expression of pro-apoptotic noxa at 540 days post-HDI-AHSCT correlated positively with insulin-free patients and conversely with glutamic acid decarboxylase autoantibodies (GAD65) autoantibody levels. Taken together, the results suggest that apoptosis-related genes deregulation in patients' PBMCs might be involved in breakdown of immune tolerance and consequently contribute to T1D pathogenesis. Furthermore, HDI-AHSCT modulated the expression of some apoptotic genes towards the levels similar to controls. Possibly, the expression of these apoptotic molecules could be applied as biomarkers of clinical remission of T1D patients treated with HDI-AHSCT therapy.
Resumo:
Alcoholism is a chronic disorder characterized by the appearance of a withdrawal syndrome following the abrupt cessation of alcohol intake that includes symptoms of physical and emotional disturbances, anxiety being the most prevalent symptom. In humans, it was shown that anxiety may increase the probability of relapse. In laboratory animals, however, the use of anxiety to predict alcohol preference has remained difficult. Excitatory amino acids as glutamate have been implicated in alcohol hangover and may be responsible for the seizures and anxiety observed during withdrawal. The dorsal periaqueductal gray (DPAG) is a midbrain region critical for the modulation/expression of anxiety- and fear-related behaviors and the propagation of seizures induced by alcohol withdrawal, the glutamate neurotransmission being one of the most affected. The present study was designed to evaluate whether low- (LA) and high-anxiety rats (HA), tested during the alcohol hangover phase, in which anxiety is the most prevalent symptom, are more sensitive to the reinforcing effects of alcohol when tested in a voluntary alcohol drinking procedure. Additionally, we were interested in investigating the main effects of reducing the excitatory tonus of the dorsal midbrain, after the blockade of the ionotropic glutamate receptors into the DPAG, on the voluntary alcohol intake of HA and LA motivated rats that were made previously experienced with the free operant response of alcohol drinking. For this purpose, we used local infusions of the N-metil D-Aspartato (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptors antagonist DL-2-Amino-7-phosphonoheptanoic acid - DL-AP7 (10 nmol/0.2 mu l) and L-glutamic acid diethyl ester - GDEE (160 nmol/0.2 mu l) respectively. Alcohol intoxication was produced by 10 daily bolus intraperitonial (IP) injections of alcohol (2.0 g/kg). Peak-blood alcohol levels were determined by gas-chromatography analysis in order to assess blood-alcohol content. Unconditioned and conditioned anxiety-like behavior was assessed by the use of the fear-potentiated startle procedure (FPS). Data collected showed that anxiety and alcohol drinking in HA animals are positively correlated in animals that were made previously familiarized with the anxiolytic effects of alcohol. In addition, anxiety-like behavior induced during alcohol hangover seems to be an effect of changes in glutamatergic neurotransmission into DPAG possibly involving AMPA/kainate and NMDA receptors, among others. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to determine the frequencies of autoantibodies to heterogeneous islet-cell cytoplasmic antigens (ICA), glutamic acid decarboxylase(65) (GAD(65)A), insulinoma-associated antigen-2 (IA-2A) and insulin (IAA)-and human leukocyte antigen (HLA) class II markers (HLA-DR and -DQ) in first degree relatives of heterogeneous Brazilian patients with type I diabetes(T1DM). A major focus of this study was to determine the influence of age, gender, proband characteristics and ancestry on the prevalence of autoantibodies and HLA-DR and -DQ alleles on disease progression and genetic predisposition to T1DM among the first-degree relatives. IAA, ICA, GAD(65)A, IA-2A and HLA- class II alleles were determined in 546 first-degree-relatives, 244 siblings, 55 offspring and 233 parents of 178 Brazilian patients with T1DM. Overall, 8.9% of the relatives were positive for one or more autoantibodies. IAA was the only antibody detected in parents. GAD(65) was the most prevalent antibody in offspring and siblings as compared to parents and it was the sole antibody detected in offspring. Five siblings were positive for the IA-2 antibody. A significant number (62.1%) of siblings had 1 or 2 high risk HLA haplotypes. During a 4-year follow-up study, 5 siblings (expressing HLA-DR3 or -DR4 alleles) and 1 offspring positive for GAD(65)A progressed to diabetes. The data indicated that the GAD(65) and IA-2 antibodies were the strongest predictors of T1DM in our study population. The high risk HLA haplotypes alone were not predictive of progression to overt diabetes.
Resumo:
Motor cortex stimulation is generally suggested as a therapy for patients with chronic and refractory neuropathic pain. However, the mechanisms underlying its analgesic effects are still unknown. In a previous study, we demonstrated that cortical stimulation increases the nociceptive threshold of naive conscious rats with opioid participation. In the present study, we investigated the neurocircuitry involved during the antinociception induced by transdural stimulation of motor cortex in naive rats considering that little is known about the relation between motor cortex and analgesia. The neuronal activation patterns were evaluated in the thalamic nuclei and midbrain periaqueductal gray. Neuronal inactivation in response to motor cortex stimulation was detected in thalamic sites both in terms of immunolabeling (Zif268/Fos) and in the neuronal firing rates in ventral posterolateral nuclei and centromedian-parafascicular thalamic complex. This effect was particularly visible for neurons responsive to nociceptive peripheral stimulation. Furthermore, motor cortex stimulation enhanced neuronal firing rate and Fos immunoreactivity in the ipsilateral periaqueductal gray. We have also observed a decreased Zif268, delta-aminobutyric acid (GABA), and glutamic acid decarboxylase expression within the same region, suggesting an inhibition of GABAergic interneurons of the midbrain periaqueductal gray, consequently activating neurons responsible for the descending pain inhibitory control system. Taken together, the present findings suggest that inhibition of thalamic sensory neurons and disinhibition of the neurons in periaqueductal gray are at least in part responsible for the motor cortex stimulation-induced antinociception. (C) 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Ghrelin is a gastrointestinal peptide hormone (a 28-amino acid peptide) produced primarily by X/A cells in the oxyntic glands of the stomach fundus and cells lining the duodenum cavern. It suppresses insulin secretion and action and commands a significant role in regulating food intake. The aim of the present study was to show that modified laparoscopic sleeve gastrectomy (MLSG), in which a significant part of the gastric fundus and body of the stomach is removed up to 1 inch from the pylorus vein, may contribute to decreasing circulating ghrelin levels. METHODS: A study population consisting of 150 individuals was monitored after undergoing a MLSG, with individuals chosen based on a documented history of diabetes mellitus type 2 and metabolic syndrome, clinical results determining a body mass index (BMI) of 35 to 60 kg/m(2), peptide C level greater than 1, negative anti-glutamic acid decarboxylase, negative anti-insulin, and confirmed stability of drug/insulin treatment and glycosylated hemoglobin greater than 6.5% for at least 24 and 3 months, respectively, before enrollment. RESULTS: Twenty-four months after surgery, 150 patients (86.6%) presented with normal glycemic levels between 77 and 99 mg/dL. All patients improved average serum insulin levels by 9 mU/L and average glycosylated hemoglobin levels by 5.1% (normal range, 4%-6%). All patients tested negative for Helicobacter pylori and stopped using insulin, with 3 patients prescribed twice-daily use of an oral hypoglycemiant. In 14% of cases, patients experienced partial hair loss with low serum zinc levels and were prescribed oral zinc reposition and topical hair stimulants. The average weight loss recorded was 44.6% for patients with a BMI less than 45 kg/m(2) and 58% for patients with a BMI greater than 50 kg/m(2). CONCLUSIONS: The MLSG is a safe procedure with a low morbidity rate (2.7%) (4 cases of fistula and 2 of bleeding) and no surgical mortality in this study. This surgery can promote control of diabetes mellitus type 2 and aid the treatment of exogenous overweight and morbidly obese individuals. The results of this study show that only through resection of the ghrelin-producing gastric area can most obesity cases and diabetes type II conditions be reverted to nonobese and controlled diabetes. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
We previously showed that short-term hypo- and hyperthyroidism induce changes in neuropeptide glutamic-acid-isoleucine-amide (NEI) concentrations in discrete brain areas in male rats. To investigate the possible effects of hypo- and hyperthyroidism on NEI concentrations mainly in hypothalamic areas related to reproduction and behavior, female rats were sacrificed at different days of the estrous cycle. Circulating luteinizing hormone (LH), estradiol and progesterone concentrations were measured in control, hypothyroid (hypoT, treated with PTU during 7-9 days) and hyperthyroid (hyperT, l-T4 during 4-7 days) animals. Both treatments blunted the LH surge. Hypo- and hyperthyroidism increased estradiol concentrations during proestrus afternoon (P-PM), although hypoT rats showed lower values compared to control during proestrus morning (P-AM). Progesterone levels were higher in all groups at P-PM and in the hyperT during diestrus morning (D2). NEI concentrations were lower in hypoT rats during the estrous cycle except in estrus (E) in the peduncular part of the lateral hypothalamus (PLH). They were also reduced by both treatments in the perifornical part of the lateral hypothalamus (PeFLH) during P-PM. Hypothyroidism led to higher NEI concentrations during P-PM in the organum vasculosum of the lamina terminalis and anteroventral periventricular nucleus (OVLT+AVPV). The present results indicate that NEI concentration is regulated in a complex manner by hypo- and hyperthyroidism in the different areas studied, suggesting a correlation between NEI values and the variations of gonadal steroid levels during estrous cycle. These changes could be, in part, responsible for the alterations observed in the hypothalamic-pituitary-gonadal axis in these pathologies.
Resumo:
The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration, neuroprotection and neuronal plasticity. The CB1 cannabinoid receptors are abundantly expressed in the basal ganglia, the circuitry that is mostly affected in Parkinson’s Disease (PD). Some studies show variation of CB1 expression in basal ganglia in different animal models of PD, however the results are quite controversial, due to the differences in the procedures employed to induce the parkinsonism and the periods analyzed after the lesion. The present study evaluated the CB1 expression in four basal ganglia structures, namely striatum, external globus pallidus (EGP), internal globus pallidus (IGP) and substantia nigra pars reticulata (SNpr) of rats 1, 5, 10, 20, and 60 days after unilateral intrastriatal 6-hydroxydopamine injections, that causes retrograde dopaminergic degeneration. We also investigated tyrosine hydroxylase (TH), parvalbumin, calbindin and glutamic acid decarboxylase (GAD) expression to verify the status of dopaminergic and GABAergic systems. We observed a structure-specific modulation of CB1 expression at different periods after lesions. In general, there were no changes in the striatum, decreased CB1 in IGP and SNpr and increased CB1 in EGP, but this increase was not sustained over time. No changes in GAD and parvalbumin expression were observed in basal ganglia, whereas TH levels were decreased and the calbindin increased in striatum in short periods after lesion. We believe that the structure-specific variation of CB1 in basal ganglia in the 6-hydroxydopamine PD model could be related to a compensatory process involving the GABAergic transmission, which is impaired due to the lack of dopamine. Our data, therefore, suggest that the changes of CB1 and calbindin expression may represent a plasticity process in this PD model
Resumo:
ZusammenfassungDie selbstkondensierende Gruppenübertragungspolymerisation von 2-[(2-Methyl-1-triethylsiloxy-1-propenyl)oxy]ethyl-methacrylat (MTSHEMA) und die Copolymerisation mit Methylmethacrylat und tert-Butylmethacrylat wurde untersucht. Da MTSHEMA eine polymerisierbare Methacryloyl-Einheit und eine zur Initiierung einer Gruppenübertragungspolymerisation befähigte Silylketenacetal-Einheit besitzt, führt die Homopolymerisation zu hyperverzweigten und die Copolymerisation zu hochverzweigten Polymeren.Bei der Homopolymerisation von MTSHEMA konnten nur niedrige Molekulargewichte erreicht werden. Dies wird auf Nebenreaktionen der aktiven Kettenenden zurückgeführt, welche die Carbonylgruppen nucleophil angreifen und, mit der Doppelbindung Kern-Einheit reagieren. Die Copolymerisation mit Methylmethacrylat verlauft ohne Nebenreaktionen. Durch die Variation des molaren Verhältnisses von MTSHEMA zu den Comonomeren war es möglich, das Molekulargewicht, den Verzweigungsgrad und dadurch die Viskosität in Lösung zu kontrollieren. Die Bestimmung der Molekulargewichtsverteilung sämtlicher Polymere erfolgte durch Kopplung der Gelpermeationschromatographie mit einem Viskositätsdetektor und einem Vielwinkel Lichtstreu-Photometer. Die aus dem Vergleich der Viskositäten und Trägheitsradien ermittelten Schrumpfungspa-rameter lassen Schlüsse auf den Verzweigungsgrad zu.Nach den Ergebnissen der viskoelastischen Spektroskopie folgt das Verhalten der verzweigten Polymere in der Schmelze der Rouse-Theorie und deutet damit auf die Abwesenheit von Verschlaufungen hin.Durch die Copolymerisation mit tert-Butylmethacrylat und MTSHEMA konnte hochverzweigtes Poly(tert-butylmethacrylat) synthetisiert werden. Die Verseifung dieser Polymere ergab verzweigte Polymethacrylsäure.
Resumo:
The dramatic impact that vascular diseases have on human life quality and expectancy nowadays is the reason why both medical and scientific communities put great effort in discovering new and effective ways to fight vascular pathologies. Among the many different treatments, endovascular surgery is a minimally-invasive technique that makes use of X-ray fluoroscopy to obtain real-time images of the patient during interventions. In this context radiopaque biomaterials, i.e. materials able to absorb X-ray radiation, play a fundamental role as they are employed both to enhance visibility of devices during interventions and to protect medical staff and patients from X-ray radiations. Organic-inorganic hybrids are materials that combine characteristics of organic polymers with those of inorganic metal oxides. These materials can be synthesized via the sol-gel process and can be easily applied as thin coatings on different kinds of substrates. Good radiopacity of organic-inorganic hybrids has been recently reported suggesting that these materials might find applications in medical fields where X-ray absorption and visibility is required. The present PhD thesis aimed at developing and characterizing new radiopaque organic-inorganic hybrid materials that can find application in the vascular surgery field as coatings for the improvement of medical devices traceability as well as for the production of X-ray shielding objects and garments. Novel organic-inorganic hybrids based on different polyesters (poly-lactic acid and poly-ε-caprolactone) and polycarbonate (poly-trimethylene carbonate) as the polymeric phase and on titanium oxide as the inorganic phase were synthesized. Study of the phase interactions in these materials allowed to demonstrate that Class II hybrids (where covalent bonds exists between the two phases) can be obtained starting from any kind of polyester or polycarbonate, without the need of polymer pre-functionalization, thanks to the occurrence of transesterification reactions operated by inorganic molecules on ester and carbonate moieties. Polyester based hybrids were successfully coated via dip coating on different kinds of textiles. Coated textiles showed improved radiopacity with respect to the plain fabric while remaining soft to the touch. The hybrid was able to coat single fibers of the yarn rather than coating the yarn as a whole. Openings between yarns were maintained and therefore fabric breathability was preserved. Such coatings are promising for the production of light-weight garments for X-ray protection of medical staff during interventional fluoroscopy, which will help preventing pathologies that stem from chronic X-ray exposure. A means to increase the protection capacity of hybrid-coated fabrics was also investigated and implemented in this thesis. By synthesizing the hybrid in the presence of a suspension of radiopaque tantalum nanoparticles, PDMS-titania hybrid materials with tunable radiopacity were developed and were successfully applied as coatings. A solution for enhancing medical device radiopacity was also successfully investigated. High metal radiopacity was associated with good mechanical and protective properties of organic-inorganic hybrids in the form of a double-layer coating. Tantalum was employed as the constituent of the first layer deposited on sample substrates by means of a sputtering technique. The second layer was composed of a hybrid whose constituents are well-known biocompatible organic and inorganic components, such as the two polymers PCL and PDMS, and titanium oxide, respectively. The metallic layer conferred to the substrate good X-ray visibility. A correlation between radiopacity and coating thickness derived during this study allows to tailor radiopacity simply by controlling the metal layer sputtering deposition time. The applied metal deposition technique also permits easy shaping of the radiopaque layer, allowing production of radiopaque markers for medical devices that can be unambiguously identified by surgeons during implantation and in subsequent radiological investigations. Synthesized PCL-titania and PDMS-titania hybrids strongly adhered to substrates and show good biocompatibility as highlighted by cytotoxicity tests. The PDMS-titania hybrid coating was also characterized by high flexibility that allows it to stand large substrate deformations without detaching nor cracking, thus being suitable for application on flexible medical devices.