890 resultados para poly(phenylene vinylene) and derivatives
Resumo:
Differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA) have been used to study the thermal decomposition, the melting behavior and low-temperature transitions of copolymers obtained by radiation-induced grafting of styrene onto poly (tetrafluoroethylene- perfluoropropylvinylether) (PFA) substrates. PFA with different contents of perfluoropropylvinylether (PPVE) as a comonomer have been investigated. A two step degradation pattern was observed from TGA thermograms of all the grafted copolymers, which was attributed to degradation of PSTY followed by the degradation of the PFA backbone at higher temperature. One broad melting peak can be identified for all copolymers, which has two components in the samples with higher PPVE content. The melting peak, crystal-crystal transition and the degree of crystallinity of the grafted copolymers increases with radiation grafting up to 50 kGy, followed by a decrease at higher doses. No such decrease was observed in the ungrafted PFA samples after irradiation. This indicated that the changes in the heats of transitions and crystallinity at low doses are due to the radiation effects on the microstructure of PFA (chain scission), whereas at higher doses the grafted PSTY is the driving force behind these changes. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The molecular weight changes which occur on the gamma -radiolysis of poly(dimethyl siloxane) under vacuum between 77 and 373 K and in air at 303 K have been investigated using triple detection GPC to obtain the complete molecular weight distributions for the irradiated samples and to determine the number and weight average molecular weights. The results have been interpreted in terms of the relative yields of scission and crosslinking. The total yields for crosslinking predominate over those for scission at all the temperatures investigated for radiolysis under vacuum. Based on a solid-state Si-29 NMR analysis of PDMS irradiated under vacuum at 303 K, which yielded a value of G(Y) of 1.70, the values of G(S) = 1.15 +/-0.2 and G(H) = 1.45 +/-0.2 were obtained for radiolysis under vacuum at 303 K. For radiolysis in air at 303 K, crosslinking was also predominant, but the nett yield of crosslinking was much less than that observed for radiolysis under vacuum. Under the conditions of the radiolysis in air at 303 K, because of the low solubility of oxygen in PDMS, it is likely that the radiation chemistry is limited by oxygen diffusion. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The reactions of sodium benzoate with a series of trimesylates derived from glucosamine have been examined in an attempt to gain facile access to galactosamine analogues. Trimesylate 17, in which the amino group was protected as a phthalimide, underwent double displacement at positions 4 and 6 to give the dibenzoate 18 with the desired galactosamine configuration. In contrast, trimesylates 21 and 27, in which the amino groups were protected as acetamides, unexpectedly underwent double displacement at positions 3 and 6, giving products 22 and 28, respectively, with allosamine configurations.
Resumo:
The synthesis, characterization and copper(II) coordination chemistry of three new cyclic peptide ligands, PatJ(1) (cyclo-(Ile -Thr- (Gly)Thz-lle-Thr(Gly)Thz)), PatJ(2) (cyclo-(Ile-Thr(Gly)Thz-(D)-Ile-Thr-(Gly)Thz)), and PatL (cyclo-(Ile-Ser-(Gly)Thz-Ile-Ser(Gly)Thz)) are reported. All of these cyclic peptides and PatN (cyclo-(Ile-Ser(Gly)Thz-Ile-Thr-(Gly)Thz)) are derivatives of patellamide A and have a [24]azacrown-8 macrocyclic structure. All four synthetic cyclic peptides have two thiazole rings but, in contrast to patellamide A, no oxazoline rings. The molecular structure of PatJ1, determined by X-ray crystallography, has a saddle conformation with two close-to-co-parallel thiazole rings, very similar to the geometry of patellamide D. The two coordination sites of PatJ1 with thiazole-N and amide-N donors are each well preorganized for transition metal ion binding. The coordination of copper(II) was monitored by UV/Vis spectroscopy, and this reveals various (meta)stable mono- and dinuclear copper(II) complexes whose stoichiometry was confirmed by mass spectra. Two types of dinuclear copper(II) complexes, [Cu-2(H4L)(OH2)(n)](2+) (n = 6, 8) and [Cu-2(H4L)(OH2)(n)] (n=4, 6; L=PatN, PatL, PatJ1, PatJ2) have been identified and analyzed structurally by EPR spectroscopy and a combination of spectra simulations and molecular mechanics calculations (MM-EPR). The four structures are similar to each other and have a saddle conformation, that is, derived from the crystal structure of PatJ(1) by a twist of the two thiozole rings. The small but significant structural differences are characterized by the EPR simulations.
Resumo:
A study has been made to investigate the radiation grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) substrates, using the simultaneous irradiation method. Two PFA polymers of different comonomer perfluoropropyl vinyl ether (PPVE) content and degree of crystallinity were used. Effects of grafting conditions such as monomer concentrations, type of solvent, dose rate, and irradiation dose on the grafting yield were investigated. Of the six different solvents used, the most efficient in terms of increasing grafting yield were dichloromethane, benzene, and methanol. The degree of grafting increased with increasing radiation dose up to 500 kGy, stabilizing above this dose. However, the grafting yield decreased with an increase in the dose rate. The grafting of styrene onto the PFA substrates was confirmed by FTIR-ATR and micro-Raman spectroscopy, The increase in the overall grafting yield was accompanied by a proportional increase in the penetration depth of the grafts into the substrate.
Resumo:
Two series of benzimidazole derivatives were sythesised. The first one was based on 5,6-dinitrobenzimidazole, the second one comprises 2-thioalkyl- and thioaryl-substituted modified benzimidazoles. Antibacterial and antiprotozoal. activity of the newly obtained compounds was studied. Some thioalkyl derivatives showed remarkable activity against nosocomial strains of Stenotrophomonas malthophilia, and an activity comparable to that of metronidazole against Gram-positive and Gram-negative bacteria. Of the tested compounds, 5,6-dichloro-2-(4-nitrobenzylthio)-benzimidazole showed the most distinct antiprotozoal activity.
Resumo:
Little is known about risk management in the public sector This study reports on a survey of senior officers in Australian Commonwealth companies and statutory authorities concerning their practice and attitudes towards the use of derivative instruments for risk management. Using a variety of tests, the most important issue identified by respondents concerning the use of derivatives is for budgeting purposes. Of note, respondents rank commonly cited reasons advanced in the private sector such as reduced bankruptcy costs and taxation, as being relatively unimportant, which is consistent with arguments advanced in the paper The results also indicate that there are significant differences in the level of importance in some issues regarding derivatives use across public sector organisations, particularly those differentiated by a documented risk management plan. The study also documents for the first time the extent of derivatives use in the Australian public sector.
Resumo:
A comparative study has been made of the radiation grafting of styrene onto poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) (PFA) and polypropylene (PP) substrates, using the simultaneous irradiation method. Effects of grafting conditions such as monomer concentrations, type of solvent, dose rate and irradiation dose on the grafting yield were investigated. Under the same grafting conditions it was found that a higher degree of grafting of styrene was obtained using a mixture of dichloromethane/methanol solvents for PFA and methanol for PP and the degree of grafting was higher in PP than in PFA at all doses. However, the micro-Raman spectroscopy analysis of the graft revealed that, for the same degree of grafting, the penetration depth of the grafted polystyrene into the substrate was higher in PFA than in PP substrates. In both polymers the crystallinity was hardly affected by the grafting process and the degree of crystallinity decreased slightly with grafting dose. The dependence of the initial rate of grafting on the dose rate and the monomer concentration was found to be 0.6 and 1.4 order for PFA and 0.15 and 2.2 for PP, respectively. The degree of grafting increased with increasing radiation dose in both polymers. However, the grafting yield decreased with an increase in the dose rate. The increase in the overall grafting yield for PFA and PP was accompanied by a proportional increase in the penetration depth of the graft into the substrates. (C) 2003 Society of Chemical Industry.
Resumo:
Poly(vinylidene fluoride-trifluoethylene) electrospun membranes were obtained from a blend of dimethylformamide (DMF) and methylethylketone (MEK) solvents. The inclusion of the MEK to the solvent system promotes a faster solvent evaporation allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. Several processing parameters were systematically changed to study their influence on fiber dimensions. Applied voltage and inner needle diameter do not have large influence on the electrospun fiber average diameter but in the fiber diameter distribution. On the other hand, the increase of the distance between the needle tip to collector results in fibers with larger average diameter. Independently on the processing conditions, all mats are produced in the electroactive phase of the polymer. Further, MC-3T3-E1cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications.
Resumo:
Electroactivematerials can be taken to advantage for the development of sensors and actuators as well as for novel tissue engineering strategies. Composites based on poly(vinylidenefluoride),PVDF,have been evaluated with respect to their biological response. Cell viability and proliferation were performed in vitro both with Mesenchymal Stem Cells differentiated to osteoblasts and Human Fibroblast Foreskin 1. In vivo tests were also performed using 6-week-old C57Bl/6 mice. It was concluded that zeolite and clay composites are biocompatible materials promoting cell response and not showing in vivo pro-inflammatory effects which renders both of them attractive for biological applications and tissue engineering, opening interesting perspectives to development of scaffolds from these composites. Ferrite and silver nanoparticle composites decrease osteoblast cell viability and carbon nanotubes decrease fibroblast viability. Further, carbon nanotube composites result in a significant increase in local vascularization accompanied an increase of inflammatory markers after implantation.
Resumo:
Poly(hydroxybutyrate) (PHB) obtained from sugar cane was dissolved in a blend of chloroform and dimethylformamide (DMF) and electrospun at 40 ºC. By adding DMF to the solution, the electrospinning process for the PHB polymer becomes more stable, allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. The influence of processing parameters on fiber size and distribution was systematically studied. It was observed that an increase of tip inner diameter promotes a decrease of the fiber average size and a broader distribution. On the other hand, an increase of the electric field and flow rate produces an increase of fiber diameter until a maximum of ~2.0 m, but for electric fields higher than 1.5 kV.cm-1, a decrease of the fiber diameter was observed. Polymer crystalline phase seems to be independent of the processing conditions and a crystallinity degree of 53 % was found. Moreover, thermal degradation of the as-spun membrane occurs in single step degradation with activation energy of 91 kJ/mol. Furthermore, MC-3T3-E1 cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications.
Resumo:
Poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3,([PVDF]1−x/[PZT]x) composites of volume fractions x and (0–3) type connectivity were prepared in the form of thin films. PZT powders with average grain sizes of 0.2, 0.84, and 2.35 μm in different volume fraction of PZT up to 40 % were mixed with the polymeric matrix. The influence of the inorganic particle size and its content on the thermal degradation properties of the composites was then investigated by means of thermo-gravimetric analysis. It is observed that filler size affects more than filler concentration the degradation temperature and activation energy of the polymer. In the same way and due to their larger specific area, smaller particles leave larger solid residuals after the polymer degradation. The polymer degradation mechanism is not significantly modified by the presence of the inorganic fillers. On the other hand, an inhibition effect occurs due to the presence of the fillers, affecting particularly the activation energy of the process.
Resumo:
This work reports on the influence of polarization and morphology of electroactive poly(vinylidene fluoride), PVDF, on the biological response of myoblast cells. Non-poled, ‘‘poled +’’ and “poled-“ -PVDF were prepared in the form of films. Further, random and aligned electrospun -PVDF fiber mats were also prepared. It is demonstrated that negatively charged surfaces improve cell adhesion and proliferation and that the directional growth of the myoblast cells can be achieved by the cell culture on oriented fibers. Therefore, the potential application of electroative materials for muscle regeneration is demonstrated.
Resumo:
Poly(vinylidene fluoride) electrospun membranes have been prepared with different NaY zeolite contents up to 32%wt. Inclusion of zeolites induces an increase of average fiber size from ~200 nm in the pure polymer up to ~500 nm in the composite with 16%wt zeolite content. For higher filler contents, a wider distribution of fibers occurs leading to a broader size distributions between the previous fiber size values. Hydrophobicity of the membranes increases from ~115º water contact angle to ~128º with the addition of the filler and is independent on filler content, indicating a wrapping of the zeolite by the polymer. The water contact angle further increases with fiber alignment up to ~137º. Electrospun membranes are formed with ~80 % of the polymer crystalline phase in the electroactive phase, independently on the electrospinning processing conditions or filler content. Viability of MC3T3-E1 cells on the composite membranes after 72 h of cell culture indicates the suitability of the membranes for tissue engineering applications.