951 resultados para phonological working memory


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Children typically hold very optimistic views of their own skills but so far, only a few studies have investigated possible correlates of the ability to predict performance accurately. Therefore, this study examined the role of individual differences in performance estimation accuracy as a global metacognitive index for different monitoring and control skills (item-level judgments of learning [JOLs] and confidence judgments [CJs]), metacognitive control processes (allocation of study time and control of answers), and executive functions (cognitive flexibility, inhibition, working memory) in 6-year-olds (N=93). The three groups of under estimators, realists and over estimators differed significantly in their monitoring and control abilities: the under estimators outperformed the over estimators by showing a higher discrimination in CJs between correct and incorrect recognition. Also, the under estimators scored higher on the adequate control of incorrectly recognized items. Regarding the interplay of monitoring and control processes, under estimators spent more time studying items with low JOLs, and relied more systematically on their monitoring when controlling their recognition compared to over estimators. At the same time, the three groups did not differ significantly from each other in their executive functions. Overall, results indicate that differences in performance estimation accuracy are systematically related to other global and item-level metacognitive monitoring and control abilities in children as young as six years of age, while no meaningful association between performance estimation accuracy and executive functions was found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of the present article is to introduce dual-process theories – in particular the default-interventionist model – as an overarching framework for attention-related research in sports. Dual-process theories propose that two different types of processing guide human behavior. Type 1 processing is independent of available working memory capacity (WMC), whereas Type 2 processing depends on available working memory capacity. We review the latest theoretical developments on dual-process theories and present evidence for the validity of dual-process theories from various domains. We demonstrate how existing sport psychology findings can be integrated within the dual-process framework. We illustrate how future sport psychology research might benefit from adopting the dual-process framework as a meta-theoretical framework by arguing that the complex interplay between Type 1 and Type 2 processing has to be taken into account in order to gain a more complete understanding of the dynamic nature of attentional processing during sport performance at varying levels of expertise. Finally, we demonstrate that sport psychology applications might benefit from the dual-process perspective as well: dual-process theories are able to predict which behaviors can be more successfully executed when relying on Type 1 processing and which behaviors benefit from Type 2 processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Survivors of brain tumors have a high risk for a wide range of cognitive problems. These dysfunctions are caused by the lesion itself and its surgical removal, as well as subsequent treatments (chemo- and/or radiation therapy). Multiple recent studies have indicated that children with brain tumors (BT) might already exhibit cognitive problems at diagnosis, i.e., before the start of any medical treatment. The aim of the present study was to investigate the baseline neuropsychological profile in children with BT compared to children with an oncological diagnosis not involving the central nervous system (CNS). Methods: Twenty children with BT and 27 children with an oncological disease without involvement of the CNS (age range: 6.1 to 16.9 years) were evaluated with an extensive battery of neuropsychological tests tailored to the patient’s age. Furthermore, the child and his/her parent(s) completed self-report questionnaires about emotional functioning and quality of life. In both groups, tests were administered before any therapeutic intervention such as surgery, chemotherapy or irradiation. Groups were comparable with regard to age, gender and socioeconomic status. Results: Compared to the control group, patients with BTs performed significantly worse in tests of working memory, verbal memory and attention (effect sizes between 0.28 and 0.47). In contrast, the areas of perceptual reasoning, processing speed and verbal comprehension were preserved at the time of measurement. Conclusion: Our results highlight the need for cognitive interventions early in the treatment process in order to minimize or prevent academic difficulties as patients return to school.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Previous work highlighted the possibility that musical training has an influence on cognitive functioning. The suggested reason for this influence is the strong recruitment of attention, planning, and working memory functions during playing a musical instrument. The purpose of the present work was twofold, namely to evaluate the general relationship between pre-stimulus electrophysiological activity and cognition, and more specifically the influence of musical expertise on working memory functions. With this purpose in mind, we used covariance mapping analyses to evaluate whether pre-stimulus electroencephalographic activity is predictive for reaction time during a visual working memory task (Sternberg paradigm) in musicians and non-musicians. In line with our hypothesis, we replicated previous findings pointing to a general predictive value of pre-stimulus activity for working memory performance. Most importantly, we also provide first evidence for an influence of musical expertise on working memory performance that could distinctively be predicted by pre-stimulus spectral power. Our results open novel perspectives for better comprehending the vast influences of musical expertise on cognition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the annals of cognitive neuroscience there are examples of fantastic memory abilities (e.g., Luria, 1968) that befuddle the vast majority of us with normal mnemonic skills. Although such feats have yet to be demonstrated in other species, extraordinary memory may not be unique to humans. One possible example comes from a study by Inoue and Matsuzawa (2007), which showed that following extensive training, a chimpanzee, Ayumu, displayed superior working memory than human volunteers. Recently, Humphrey (2012) hypothesized that Ayumu outperformed the human participants because he had synaesthesia, a condition in which a stimulus (an inducer) will involuntarily elicit an atypical ancillary experience (a concurrent) (e.g., graphemes eliciting color photisms) (Ward, 2013). Specifically, Humphrey posits that Ayumu spontaneously developed grapheme-colour synaesthesia through “cross-cortical leakage” (p. 354) between the parietal cortex, which may support the storage of overlearned sequences, and adjacent colour-coding regions, during working memory training. Humphrey speculates that the synaesthetic associations elicited colour after-images during training with numerals, and, in turn, facilitated superior performance. Here we challenge this hypothesis and argue that it makes a number of assumptions that are not supported by current research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE To assess whether exposure to high altitude induces cognitive dysfunction in young healthy European children and adolescents during acute, short-term exposure to an altitude of 3450 m and in an age-matched European population permanently living at this altitude. STUDY DESIGN We tested executive function (inhibition, shifting, and working memory), memory (verbal, short-term visuospatial, and verbal episodic memory), and speed processing ability in: (1) 48 healthy nonacclimatized European children and adolescents, 24 hours after arrival at high altitude and 3 months after return to low altitude; (2) 21 matched European subjects permanently living at high altitude; and (3) a matched control group tested twice at low altitude. RESULTS Short-term hypoxia significantly impaired all but 2 (visuospatial memory and processing speed) of the neuropsychological abilities that were tested. These impairments were even more severe in the children permanently living at high altitude. Three months after return to low altitude, the neuropsychological performances significantly improved and were comparable with those observed in the control group tested only at low altitude. CONCLUSIONS Acute short-term exposure to an altitude at which major tourist destinations are located induces marked executive and memory deficits in healthy children. These deficits are equally marked or more severe in children permanently living at high altitude and are expected to impair their learning abilities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mild Cognitive Impairment- Amnestic Subtype (MCIa) is a putative prodromal stage of Alzheimer’s Disease (AD) characterized by focal deficits in episodic verbal memory. Less is known about relative deficits in visuospatial learning, although there is ample evidence indicating involvement of the hippocampus in visuospatial learning, as well as hippocampal degeneration in early AD. The aim of this study was to better characterize the components of working memory dysfunction in people with MCIa to increase the ability to reliably diagnose this disease. Fifty-six elderly adults diagnosed with MCIa and 94 healthy elderly completed a hidden maze learning task. Results indicated similar functioning between groups on measures of reasoning, problem solving, and accuracy. However, MCIa subjects were less efficient at learning the hidden path, making more errors per second on average (Cohen’s d= -.78) and requiring a longer time to complete the maze (Cohen’s d=.77). The learning curve between the first two trials was four times as steep for healthy elderly compared to MCIa (slopes = 4.9 vs. 1.24, respectively), indicating that MCIa subjects exhibited relative difficulty in holding and making effective use of an internal spatial map in order to improve performance. Our results suggest that MCIa patients have focal deficits in visuospatial working memory, with relative preservation of functioning on other more global measures of cognitive functioning. This particular pattern of results may be specific to the amnestic variant of MCI.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While it is commonly assumed that brain systems receive and process information from other brain systems, there are few examples of tractable behaviors that allow such interactions to be studied. With the experiments presented in this dissertation we provide evidence that trace eyelid conditioning, a simple form of associative learning, is mediated by cerebellar learning in response to the output of persistent neural activity in the prefrontal cortex (PFC) and thus may be useful in analyses of PFC-cerebellar interactions. In a series of stimulation and reversible inactivation experiments we provide evidence that trace eyelid conditioning is mediated by cerebellar learning in response to a learned forebrain-driven input. Specifically, we provide evidence that this input is driven by the medial PFC and persists through the stimulus free trace interval of trace eyelid conditioning. In the next set of experiments we show that directly presenting the cerebellum with a pattern of input that mimics the classic persistent activity of PFC neurons reconstitutes trace eyelid conditioning, as assessed by a number of stringent tests. Finally, in set of reversible inactivation experiments, we provide evidence that bidirectional learning during trace eyelid conditioning involves the omission of the persistent, PFC-driven input that the cerebellum learns and responds to during trace eyelid conditioning. Given that persistent activity in PFC is often associated with working memory, these experiments suggest that trace eyelid conditioning may be useful in analyses of working memory mechanisms, cerebellar information processing and their interaction. To facilitate future analyses, we conclude with a working hypothesis of forebrain-cerebellum interactions during trace eyelid conditioning that addresses how persistent activity in PFC is induced and how the cerebellum decodes and uses PFC-driven input. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuropsychological impairment occurs in 20%-40% of childhood acute lymphoblastic leukemia (ALL) survivors, possibly mediated by folate depletion following methotrexate chemotherapy. We evaluated the relationship between two folate pathway polymorphisms and neuropsychological impairment after childhood ALL chemotherapy. Eighty-six childhood ALL survivors were recruited between 2004-2007 at Texas Children's Hospital after exclusion for central nervous system leukemia, cranial irradiation, and age<1 year at diagnosis. Neuropsychological evaluation at a median of 5.3 years off therapy included a parental questionnaire and the following child performance measures: Trail Making Tests A and B, Grooved Pegboard Test Dominant-Hand and Nondominant-Hand, and Digit Span subtest. We performed genotyping for polymorphisms in two folate pathway genes: reduced folate carrier (RFC1 80G>A, rs1051266) and dihydrofolate reductase (DHFR Intron-1 19bp deletion). Fisher exact test, logistic regression, Student's t-test, and ANOVA were used to compare neuropsychological test scores by genotype, using a dominant model to group genotypes. In univariate analysis, survivors with cumulative methotrexate exposure ≥9000 mg/m2 had an increased risk of attention disorder (OR=6.2, 95% CI 1.2 – 31.3), compared to survivors with methotrexate exposure <9000 mg/m2. On average, female survivors scored 8.5 points higher than males on the Digit Span subtest, a test of working memory (p=0.02). The RFC1 80G>A and DHFR Intron-1 deletion polymorphisms were not related to attention disorder or impairment on tests of attention, processing speed, fine motor speed, or memory. These data imply a strong relationship between methotrexate dose intensity and impairment in attention after childhood ALL therapy. We did not find an association between the RFC1 80G>A or DHFR Intron-1 deletion polymorphisms and long-term neuropsychological impairment in childhood ALL survivors.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: Self-neglect (SN) is the inability to maintain self-care needs. It is thought that older adults who have impaired executive function (EF) develop the inability to do self-care and to protect themselves. The specific aims were to (1) determine the feasibility of using multiple EF measures with community-dwelling elders with SN, (2) identify changes in EF between baseline and 5-months in community-dwelling elders with SN who receive 50,000 IU or 400 IU of oral vitamin D monthly and (2) explore changes in specific dimensions of EF between the groups. ^ Methods: Fifty adults, 65 years of age and older, were recruited from Adult Protective Services with confirmed SN. A research nurse administered the following tests at baseline and five-months: Delis-Kaplan Card Sort Test (D-KEFS), Executive Interview (EXIT 25), CLOX Drawing Test (CLOX I, II), Trails Making Test A and B (TMT A & B) and the Mini-Mental State Examination (MMSE). Demographic data was collected at baseline and serum 25-OHD levels were collected at baseline and five-months. ^ Results: Older adults with SN were more likely to fail the CLOX1 and D-KEFS, while passing the MMSE, CLOX II, TMT A & B and the EXIT 25. At five-months, the only statistically significant difference between groups was in the TMT A & B test scores; the control group did better than the treatment group. There was a non-significant increase in serum vitamin D levels for both groups and no difference between groups. ^ Conclusions: Results from this study provide support that individuals who SN will complete a battery of EF tests and that they exhibit the following impairments consistent with executive dysfunction: 'concept generation', 'planning', 'inhibition', and 'spatial working memory'. Utilizing only one EF measure in individuals with intact cognition may result in unidentification of individuals with executive dysfunction, thus delaying necessary treatment. Future studies should attempt to determine different etiologies of executive dysfunction and determine if early treatment can prevent or reverse SN. ^ Key Words: Self-neglect, Executive Dysfunction, Executive Function, Adult Protective Services, Community-dwelling, Vitamin D ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Clinical Research Data Quality Literature Review and Pooled Analysis We present a literature review and secondary analysis of data accuracy in clinical research and related secondary data uses. A total of 93 papers meeting our inclusion criteria were categorized according to the data processing methods. Quantitative data accuracy information was abstracted from the articles and pooled. Our analysis demonstrates that the accuracy associated with data processing methods varies widely, with error rates ranging from 2 errors per 10,000 files to 5019 errors per 10,000 fields. Medical record abstraction was associated with the highest error rates (70–5019 errors per 10,000 fields). Data entered and processed at healthcare facilities had comparable error rates to data processed at central data processing centers. Error rates for data processed with single entry in the presence of on-screen checks were comparable to double entered data. While data processing and cleaning methods may explain a significant amount of the variability in data accuracy, additional factors not resolvable here likely exist. Defining Data Quality for Clinical Research: A Concept Analysis Despite notable previous attempts by experts to define data quality, the concept remains ambiguous and subject to the vagaries of natural language. This current lack of clarity continues to hamper research related to data quality issues. We present a formal concept analysis of data quality, which builds on and synthesizes previously published work. We further posit that discipline-level specificity may be required to achieve the desired definitional clarity. To this end, we combine work from the clinical research domain with findings from the general data quality literature to produce a discipline-specific definition and operationalization for data quality in clinical research. While the results are helpful to clinical research, the methodology of concept analysis may be useful in other fields to clarify data quality attributes and to achieve operational definitions. Medical Record Abstractor’s Perceptions of Factors Impacting the Accuracy of Abstracted Data Medical record abstraction (MRA) is known to be a significant source of data errors in secondary data uses. Factors impacting the accuracy of abstracted data are not reported consistently in the literature. Two Delphi processes were conducted with experienced medical record abstractors to assess abstractor’s perceptions about the factors. The Delphi process identified 9 factors that were not found in the literature, and differed with the literature by 5 factors in the top 25%. The Delphi results refuted seven factors reported in the literature as impacting the quality of abstracted data. The results provide insight into and indicate content validity of a significant number of the factors reported in the literature. Further, the results indicate general consistency between the perceptions of clinical research medical record abstractors and registry and quality improvement abstractors. Distributed Cognition Artifacts on Clinical Research Data Collection Forms Medical record abstraction, a primary mode of data collection in secondary data use, is associated with high error rates. Distributed cognition in medical record abstraction has not been studied as a possible explanation for abstraction errors. We employed the theory of distributed representation and representational analysis to systematically evaluate cognitive demands in medical record abstraction and the extent of external cognitive support employed in a sample of clinical research data collection forms. We show that the cognitive load required for abstraction in 61% of the sampled data elements was high, exceedingly so in 9%. Further, the data collection forms did not support external cognition for the most complex data elements. High working memory demands are a possible explanation for the association of data errors with data elements requiring abstractor interpretation, comparison, mapping or calculation. The representational analysis used here can be used to identify data elements with high cognitive demands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Manuscript 1: “Conceptual Analysis: Externalizing Nursing Knowledge” We use concept analysis to establish that the report tool nurses prepare, carry, reference, amend, and use as a temporary data repository are examples of cognitive artifacts. This tool, integrally woven throughout the work and practice of nurses, is important to cognition and clinical decision-making. Establishing the tool as a cognitive artifact will support new dimensions of study. Such studies can characterize how this report tool supports cognition, internal representation of knowledge and skills, and external representation of knowledge of the nurse. Manuscript 2: “Research Methods: Exploring Cognitive Work” The purpose of this paper is to describe a complex, cross-sectional, multi-method approach to study of personal cognitive artifacts in the clinical environment. The complex data arrays present in these cognitive artifacts warrant the use of multiple methods of data collection. Use of a less robust research design may result in an incomplete understanding of the meaning, value, content, and relationships between personal cognitive artifacts in the clinical environment and the cognitive work of the user. Manuscript 3: “Making the Cognitive Work of Registered Nurses Visible” Purpose: Knowledge representations and structures are created and used by registered nurses to guide patient care. Understanding is limited regarding how these knowledge representations, or cognitive artifacts, contribute to working memory, prioritization, organization, cognition, and decision-making. The purpose of this study was to identify and characterize the role a specific cognitive artifact knowledge representation and structure as it contributed to the cognitive work of the registered nurse. Methods: Data collection was completed, using qualitative research methods, by shadowing and interviewing 25 registered nurses. Data analysis employed triangulation and iterative analytic processes. Results: Nurse cognitive artifacts support recall, data evaluation, decision-making, organization, and prioritization. These cognitive artifacts demonstrated spatial, longitudinal, chronologic, visual, and personal cues to support the cognitive work of nurses. Conclusions: Nurse cognitive artifacts are an important adjunct to the cognitive work of nurses, and directly support patient care. Nurses need to be able to configure their cognitive artifact in ways that are meaningful and support their internal knowledge representations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El dolor es un síntoma frecuente en la práctica médica. En España, un estudio realizado en el año 2000 demostró que cada médico atiende un promedio de 181 pacientes con dolor por mes, la mayoría de ellos con dolor crónico moderado1. Del 7%-8% de la población europea está afectada y hasta el 5% puede ser grave2-3, se estima, que afecta a más de dos millones de españoles4. En la consulta de Atención Primaria, los pacientes con dolor neuropático tienen tasas de depresión mucho mayores 5-6-7. El dolor neuropático8 es el dolor causado por daño o enfermedad que afecta al sistema somato-sensorial, es un problema de salud pública con un alto coste laboral, debido a que existe cierto desconocimiento de sus singularidades, tanto de su diagnóstico como de su tratamiento, que al fallar, el dolor se perpetúa y se hace más rebelde a la hora de tratarlo, en la mayoría de las ocasiones pasa a ser crónico. Los mecanismos fisiopatológicos son evolutivos, se trata de un proceso progresivo e integrado que avanza si no recibe tratamiento, ocasionando graves repercusiones en la calidad de vida de los pacientes afectados9. De acuerdo a Prusiner (premio nobel de medicina 1997), en todas las enfermedades neurodegenerativas hay algún tipo de proceso anormal de la función neuronal. Las enfermedades neurodegenerativas son la consecuencia de anormalidades en el proceso de ciertas proteínas que intervienen en el ciclo celular, por lo tanto da lugar al cúmulo de las mismas en las neuronas o en sus proximidades, disminuyendo o anulando sus funciones, como la enfermedad de Alzheimer y el mismo SXF. La proteína FMRP (Fragile Mental Retardation Protein), esencial para el desarrollo cognitivo normal, ha sido relacionada con la vía piramidal del dolor10-11-12. El Síndrome de X Frágil13-14 (SXF), se debe a la mutación del Gen (FMR-1). Como consecuencia de la mutación, el gen se inactiva y no puede realizar la función de sintetizar la proteína FMRP. Por su incidencia se le considera la primera causa de Deficiencia Mental Hereditaria sólo superada por el Síndrome de Down. La electroencefalografía (EEG) es el registro de la actividad bioeléctrica cerebral que ha traído el desarrollo diario de los estudios clínicos y experimentales para el descubrimiento, diagnóstico y tratamiento de un gran número de anormalidades neurológicas y fisiológicas del cerebro y el resto del sistema nervioso central (SNC) incluyendo el dolor. El objetivo de la presente investigación es por medio de un estudio multimodal, desarrollar nuevas formas de presentación diagnóstica mediante técnicas avanzadas de procesado de señal y de imagen, determinando así los vínculos entre las evaluaciones cognitivas y su correlación anatómica con la modulación al dolor presente en patologías relacionadas con proteína FMRP. Utilizando técnicas biomédicas (funcionalestructural) para su caracterización. Para llevar a cabo esta tarea hemos utilizado el modelo animal de ratón. Nuestros resultados en este estudio multimodal demuestran que hay alteraciones en las vías de dolor en el modelo animal FMR1-KO, en concreto en la modulación encefálica (dolor neuropático), los datos se basan en los resultados del estudio estructural (imagen histología), funcional (EEG) y en pruebas de comportamiento (Laberinto de Barnes). En la Histología se muestra una clara asimetría estructural en el modelo FMR1 KO con respecto al control WT, donde el hemisferio Izquierdo tiene mayor densidad de masa neuronal en KO hembras 56.7%-60.8%, machos 58.3%-61%, en WT hembras 62.7%-62.4%, machos 55%-56.2%, hemisferio derecho-izquierdo respectivamente, esto refleja una correlación entre hemisferios muy baja en los sujetos KO (~50%) con respecto a los control WT (~90%). Se encontró correlación significativa entre las pruebas de memoria a largo plazo con respecto a la asimetría hemisférica (r = -0.48, corregido <0,05). En el estudio de comportamiento también hay diferencias, los sujetos WT tuvieron 22% un de rendimiento en la memoria a largo plazo, mientras que en los machos hay deterioro de memoria de un 28% que se corresponden con la patología en humanos. En los resultados de EEG estudiados en el hemisferio izquierdo, en el área de la corteza insular, encuentran que la latencia de la respuesta al potencial evocado es menor (22vs32 15vs96seg), la intensidad de la señal es mayor para los sujetos experimentales FMR1 KO frente a los sujetos control, esto es muy significativo dados los resultados en la histología (140vs129 145vs142 mv). Este estudio multimodal corrobora que las manifestaciones clínicas del SXF son variables dependientes de la edad y el sexo. Hemos podido corroborar en el modelo animal que en la etapa de adulto, los varones con SXF comienzan a desarrollar problemas en el desempeño de tareas que requieren la puesta en marcha de la función ejecutiva central de la memoria de trabajo (almacenamiento temporal). En el análisis del comportamiento es difícil llegar a una conclusión objetiva, se necesitan más estudios en diferentes etapas de la vida corroborados con resultados histológicos. Los avances logrados en los últimos años en su estudio han sido muy positivos, de tal modo que se están abriendo nuevas vías de investigación en un conjunto de procesos que representan un gran desafío a problemas médicos, asistenciales, sociales y económicos a los que se enfrentan los principales países desarrollados, con un aumento masivo de las expectativas de vida y de calidad. Las herramientas utilizadas en el campo de las neurociencias nos ofrecen grandes posibilidades para el desarrollo de estrategias que permitan ser utilizadas en el área de la educación, investigación y desarrollo. La genética determina la estructura del cerebro y nuestra investigación comprueba que la ausencia de FMRP también podría estar implicada en la modulación del dolor como parte de su expresión patológica siendo el modelo animal un punto importante en la investigación científica fundamental para entender el desarrollo de anormalidades en el cerebro. ABSTRACT Pain is a common symptom in medical practice. In Spain, a study conducted in 2000 each medical professional treats an average of 181 patients with pain per month, most of them with chronic moderate pain. 7% -8% of the European population is affected and up to 5% can be serious, it is estimated to affect more than two million people in Spain. In Primary Care, patients with neuropathic pain have much higher rates of depression. Neuropathic pain is caused by damage or disease affecting the somatosensory system, is a public health problem with high labor costs, there are relatively unfamiliar with the peculiarities in diagnosis and treatment, failing that, the pain is perpetuated and becomes rebellious to treat, in most cases becomes chronic. The pathophysiological mechanisms are evolutionary, its a progressive, if untreated, causing severe impact on the quality of life of affected patients. According to Prusiner (Nobel Prize for Medicine 1997), all neurodegenerative diseases there is some abnormal process of neuronal function. Neurodegenerative diseases are the result of abnormalities in the process of certain proteins involved in the cell cycle, reducing or canceling its features such as Alzheimer's disease and FXS. FMRP (Fragile Mental Retardation Protein), is essential for normal cognitive development, and has been linked to the pyramidal tract pain. Fragile X Syndrome (FXS), is due to mutation of the gene (FMR-1). As a consequence of the mutation, the gene is inactivated and can not perform the function of FMRP synthesize. For its incidence is considered the leading cause of Mental Deficiency Hereditary second only to Down Syndrome. Electroencephalography (EEG) is the recording of bioelectrical brain activity, is a advancement of clinical and experimental studies for the detection, diagnosis and treatment of many neurological and physiological abnormalities of the brain and the central nervous system, including pain. The objective of this research is a multimodal study, is the development of new forms of presentation using advanced diagnostic techniques of signal processing and image, to determine the links between cognitive evaluations and anatomic correlation with pain modulation to this protein FMRP-related pathologies. To accomplish this task have used the mouse model. Our results in this study show alterations in multimodal pain pathways in FMR1-KO in brain modulation (neuropathic pain), the data are based on the results of the structural study (histology image), functional (EEG) testing and behavior (Barnes maze). Histology In structural asymmetry shown in FMR1 KO model versus WT control, the left hemisphere is greater density of neuronal mass (KO females 56.7% -60.8%, 58.3% -61% males, females 62.7% -62.4 WT %, males 55% -56.2%), respectively right-left hemisphere, this reflects a very low correlation between hemispheres in KO (~ 50%) subjects compared to WT (~ 90%) control. Significant correlation was found between tests of long-term memory with respect to hemispheric asymmetry (r = -0.48, corrected <0.05). In the memory test there are differences too, the WT subjects had 22% yield in long-term memory, in males there memory impairment 28% corresponding to the condition in humans. The results of EEG studied in the left hemisphere, in insular cortex area, we found that the latency of the response evoked potential is lower (22vs32 15vs96seg), the signal strength is higher for the experimental subjects versus FMR1 KO control subjects, this is very significant given the results on histology (140vs129 145vs142 mv). This multimodal study confirms that the clinical manifestations of FXS are dependent variables of age and sex. We have been able to corroborate in the animal model in the adult stage, males with FXS begin developing problems in the performance of tasks that require the implementation of the central executive function of working memory (temporary storage). In behavior analysis is difficult to reach an objective conclusion, more studies are needed in different life stages corroborated with histologic findings. Advances in recent years were very positive, being opened new lines of research that represent a great challenge to physicians, health care, social and economic problems facing the major developed countries, with a massive increase in life expectancy and quality. The tools used in the field of neuroscience offer us great opportunities for the development of strategies to be used in the area of education, research and development. Genetics determines the structure of the brain and our research found that the absence of FMRP might also be involved in the modulation of pain as part of their pathological expression being an important animal model in basic scientific research to understand the development of abnormalities in brain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stimulation of dopamine D1 receptors has profound effects on addictive behavior, movement control, and working memory. Many of these functions depend on dopaminergic systems in the striatum and D1–D2 dopamine receptor synergies have been implicated as well. We show here that deletion of the D1 dopamine receptor produces a neural phenotype in which amphetamine and cocaine, two addictive psychomotor stimulants, can no longer stimulate neurons in the striatum to express cFos or JunB or to regulate dynorphin. By contrast, haloperidol, a typical neuroleptic that acts preferentially at D2-class receptors, remains effective in inducing catalepsy and striatal Fos/Jun expression in the D1 mutants, and these behavioral and neural effects can be blocked by D2 dopamine receptor agonists. These findings demonstrate that D2 dopamine receptors can function without the enabling role of D1 receptors but that D1 dopamine receptors are essential for the control of gene expression and motor behavior by psychomotor stimulants.