978 resultados para neural algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhythmic activity plays a central role in neural computations and brain functions ranging from homeostasis to attention, as well as in neurological and neuropsychiatric disorders. Despite this pervasiveness, little is known about the mechanisms whereby the frequency and power of oscillatory activity are modulated, and how they reflect the inputs received by neurons. Numerous studies have reported input-dependent fluctuations in peak frequency and power (as well as couplings across these features). However, it remains unresolved what mediates these spectral shifts among neural populations. Extending previous findings regarding stochastic nonlinear systems and experimental observations, we provide analytical insights regarding oscillatory responses of neural populations to stimulation from either endogenous or exogenous origins. Using a deceptively simple yet sparse and randomly connected network of neurons, we show how spiking inputs can reliably modulate the peak frequency and power expressed by synchronous neural populations without any changes in circuitry. Our results reveal that a generic, non-nonlinear and input-induced mechanism can robustly mediate these spectral fluctuations, and thus provide a framework in which inputs to the neurons bidirectionally regulate both the frequency and power expressed by synchronous populations. Theoretical and computational analysis of the ensuing spectral fluctuations was found to reflect the underlying dynamics of the input stimuli driving the neurons. Our results provide insights regarding a generic mechanism supporting spectral transitions observed across cortical networks and spanning multiple frequency bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Citrobacter rodentium is a natural mouse pathogen that is genetically closelyrelated to the human enteric pathogens enteropathogenic and enterohemorrhagic E. coli.Among the repertoire of conserved virulence factors that these pathogens deliver via typeIII secretion, Tir and EspF are responsible for the formation of characteristic actin-richpedestals and disruption of tight junction integrity, respectively. There is evidence In Vitrothese effectors accomplish this, at least in part, by subverting the normal host cellularfunctions of N-WASP, a critical regulator of branched chain actin assembly. Although NWASPhas been shown to be involved in pedestal formation In Vitro, the requirements ofN-WASP-mediated actin pedestals for intestinal colonization by attaching/effacing (A/E)pathogens In Vivo is not known. Furthermore, it is not known whether N-WASP is requiredfor EspF-mediated tight junction disruption. Methods: To investigate the role of N-WASPin the gut epithelium, we generated mice with intestine-specific deletion of N-WASP(iNWKO), by mating mice homozygous for a floxed N-WASP allele (N-WASPL2L/L2L) tomice expressing Cre recombinase under the villin promoter. Separately housed groups ofWT and iNWKO mice were inoculated with 5x108 GFP-expressing C. rodentium by intragastriclavage. Stool was collected 2, 4, 7, and 12 days after infection, and recoverablecolony forming units (CFUs) of C. rodentium were quantified by plating serial dilutions ofhomogenized stool on MacConkey's agar. GFP+ colonies were counted after 24 hoursincubation at 37°C. The presence of actin pedestals was investigated by electron microscopy(EM), and tight junction morphology was assessed by immunofluorescence staining ofoccludin, ZO-1 and claudin-2. Results: C. rodentium infection did not result in mortalityin WT or iNWKO mice. Compared to controls, iNWKO mice exhibited higher levels ofbacterial shedding during the first 4 days of infection (day 4 average: WT 5.2x104 CFU/gvs. iNWKO 4.7x105 CFU/g, p=0.08), followed by a more rapid clearance of C. rodentium, (day7-12 average: WT 2x106 CFU/g vs. iNWKO 2.7x105, p=0.01). EM and immunofluorescencerevealed the complete lack of actin pedestals in iNWKO mice and no mucosa-associatedGFP+ C. rodentium by day 7. WT controls exhibited tight junction disruption, reflected byaltered distribution of ZO-1, whereas iNWKO mice had no change in the pattern of ZO-1.Conclusion: Intestinal N-WASP is required for actin pedestal formation by C. rodentium InVivo, and ablation of N-WASP is associated with more rapid bacterial clearance and decreasedability of C. rodentium to disrupt intercellular junctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The book presents the state of the art in machine learning algorithms (artificial neural networks of different architectures, support vector machines, etc.) as applied to the classification and mapping of spatially distributed environmental data. Basic geostatistical algorithms are presented as well. New trends in machine learning and their application to spatial data are given, and real case studies based on environmental and pollution data are carried out. The book provides a CD-ROM with the Machine Learning Office software, including sample sets of data, that will allow both students and researchers to put the concepts rapidly to practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a very fast method for blindly approximating a nonlinear mapping which transforms a sum of random variables. The estimation is surprisingly good even when the basic assumption is not satisfied.We use the method for providing a good initialization for inverting post-nonlinear mixtures and Wiener systems. Experiments show that the algorithm speed is strongly improved and the asymptotic performance is preserved with a very low extra computational cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parametric procedure for the blind inversion of nonlinear channels is proposed, based on a recent method of blind source separation in nonlinear mixtures. Experiments show that the proposed algorithms perform efficiently, even in the presence of hard distortion. The method, based on the minimization of the output mutual information, needs the knowledge of log-derivative of input distribution (the so-called score function). Each algorithm consists of three adaptive blocks: one devoted to adaptive estimation of the score function, and two other blocks estimating the inverses of the linear and nonlinear parts of the channel, (quasi-)optimally adapted using the estimated score functions. This paper is mainly concerned by the nonlinear part, for which we propose two parametric models, the first based on a polynomial model and the second on a neural network, while [14, 15] proposed non-parametric approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m-2 d-1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a comprehensive study of different Independent Component Analysis (ICA) algorithms for the calculation of coherency and sharpness of electroencephalogram (EEG) signals, in order to investigate the possibility of early detection of Alzheimer’s disease (AD). We found that ICA algorithms can help in the artifact rejection and noise reduction, improving the discriminative property of features in high frequency bands (specially in high alpha and beta ranges). In addition to different ICA algorithms, the optimum number of selected components is investigated, in order to help decision processes for future works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a quantitative comparisons of different independent component analysis (ICA) algorithms in order to investigate their potential use in preprocessing (such as noise reduction and feature extraction) the electroencephalogram (EEG) data for early detection of Alzhemier disease (AD) or discrimination between AD (or mild cognitive impairment, MCI) and age-match control subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the case study of a French-Spanish bilingual dyslexic girl, MP, who exhibited a severe visual attention (VA) span deficit but preserved phonological skills. Behavioural investigation showed a severe reduction of reading speed for both single items (words and pseudo-words) and texts in the two languages. However, performance was more affected in French than in Spanish. MP was administered an intensive VA span intervention programme. Pre-post intervention comparison revealed a positive effect of intervention on her VA span abilities. The intervention further transferred to reading. It primarily resulted in faster identification of the regular and irregular words in French. The effect of intervention was rather modest in Spanish that only showed a tendency for faster word reading. Text reading improved in the two languages with a stronger effect in French but pseudo-word reading did not improve in either French or Spanish. The overall results suggest that VA span intervention may primarily enhance the fast global reading procedure, with stronger effects in French than in Spanish. MP underwent two fMRI sessions to explore her brain activations before and after VA span training. Prior to the intervention, fMRI assessment showed that the striate and extrastriate visual cortices alone were activated but none of the regions typically involved in VA span. Post-training fMRI revealed increased activation of the superior and inferior parietal cortices. Comparison of pre- and post-training activations revealed significant activation increase of the superior parietal lobes (BA 7) bilaterally. Thus, we show that a specific VA span intervention not only modulates reading performance but further results in increased brain activity within the superior parietal lobes known to housing VA span abilities. Furthermore, positive effects of VA span intervention on reading suggest that the ability to process multiple visual elements simultaneously is one cause of successful reading acquisition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Active screening by mobile teams is considered the best method for detecting human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense but the current funding context in many post-conflict countries limits this approach. As an alternative, non-specialist health care workers (HCWs) in peripheral health facilities could be trained to identify potential cases who need testing based on their symptoms. We explored the predictive value of syndromic referral algorithms to identify symptomatic cases of HAT among a treatment-seeking population in Nimule, South Sudan. METHODOLOGY/PRINCIPAL FINDINGS: Symptom data from 462 patients (27 cases) presenting for a HAT test via passive screening over a 7 month period were collected to construct and evaluate over 14,000 four item syndromic algorithms considered simple enough to be used by peripheral HCWs. For comparison, algorithms developed in other settings were also tested on our data, and a panel of expert HAT clinicians were asked to make referral decisions based on the symptom dataset. The best performing algorithms consisted of three core symptoms (sleep problems, neurological problems and weight loss), with or without a history of oedema, cervical adenopathy or proximity to livestock. They had a sensitivity of 88.9-92.6%, a negative predictive value of up to 98.8% and a positive predictive value in this context of 8.4-8.7%. In terms of sensitivity, these out-performed more complex algorithms identified in other studies, as well as the expert panel. The best-performing algorithm is predicted to identify about 9/10 treatment-seeking HAT cases, though only 1/10 patients referred would test positive. CONCLUSIONS/SIGNIFICANCE: In the absence of regular active screening, improving referrals of HAT patients through other means is essential. Systematic use of syndromic algorithms by peripheral HCWs has the potential to increase case detection and would increase their participation in HAT programmes. The algorithms proposed here, though promising, should be validated elsewhere.