942 resultados para networks text analysis text network graph Gephi network measures shuffed text Zipf Heap Python
Resumo:
Magdeburg, Univ., Fak. für Wirtschaftswiss., Diss., 2014
Resumo:
Functional connectivity in human brain can be represented as a network using electroencephalography (EEG) signals. These networks--whose nodes can vary from tens to hundreds--are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which various graph metrics depend upon the network size. To this end, EEGs from 32 normal subjects were recorded and functional networks of three different sizes were extracted. A state-space based method was used to calculate cross-correlation matrices between different brain regions. These correlation matrices were used to construct binary adjacency connectomes, which were assessed with regards to a number of graph metrics such as clustering coefficient, modularity, efficiency, economic efficiency, and assortativity. We showed that the estimates of these metrics significantly differ depending on the network size. Larger networks had higher efficiency, higher assortativity and lower modularity compared to those with smaller size and the same density. These findings indicate that the network size should be considered in any comparison of networks across studies.
Resumo:
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Resumo:
The females of the two species of the Lutzomyia intermedia complex can be easily distinguished, but the males of each species are quite similar. The ratios between the extra-genital and the genital structures of L. neivai are larger than those of L. intermedia s. s., according to ANOVA. An artificial neural network was trained with a set of 300 examples, randomly taken from a sample of 358 individuals. The input vectors consisted of several ratios between some structures of each insect. The model was tested on the remaining 58 insects, 56 of which (96.6%) were correctly identified. This ratio of success can be considered remarkable if one takes into account the difficulty of attaining comparable results using traditional statistical techniques.
Resumo:
Network analysis naturally relies on graph theory and, more particularly, on the use of node and edge metrics to identify the salient properties in graphs. When building visual maps of networks, these metrics are turned into useful visual cues or are used interactively to filter out parts of a graph while querying it, for instance. Over the years, analysts from different application domains have designed metrics to serve specific needs. Network science is an inherently cross-disciplinary field, which leads to the publication of metrics with similar goals; different names and descriptions of their analytics often mask the similarity between two metrics that originated in different fields. Here, we study a set of graph metrics and compare their relative values and behaviors in an effort to survey their potential contributions to the spatial analysis of networks.
Resumo:
Linking the structural connectivity of brain circuits to their cooperative dynamics and emergent functions is a central aim of neuroscience research. Graph theory has recently been applied to study the structure-function relationship of networks, where dynamical similarity of different nodes has been turned into a "static" functional connection. However, the capability of the brain to adapt, learn and process external stimuli requires a constant dynamical functional rewiring between circuitries and cell assemblies. Hence, we must capture the changes of network functional connectivity over time. Multi-electrode array data present a unique challenge within this framework. We study the dynamics of gamma oscillations in acute slices of the somatosensory cortex from juvenile mice recorded by planar multi-electrode arrays. Bursts of gamma oscillatory activity lasting a few hundred milliseconds could be initiated only by brief trains of electrical stimulations applied at the deepest cortical layers and simultaneously delivered at multiple locations. Local field potentials were used to study the spatio-temporal properties and the instantaneous synchronization profile of the gamma oscillatory activity, combined with current source density (CSD) analysis. Pair-wise differences in the oscillation phase were used to determine the presence of instantaneous synchronization between the different sites of the circuitry during the oscillatory period. Despite variation in the duration of the oscillatory response over successive trials, they showed a constant average power, suggesting that the rate of expenditure of energy during the gamma bursts is consistent across repeated stimulations. Within each gamma burst, the functional connectivity map reflected the columnar organization of the neocortex. Over successive trials, an apparently random rearrangement of the functional connectivity was observed, with a more stable columnar than horizontal organization. This work reveals new features of evoked gamma oscillations in developing cortex.
Resumo:
Patients with Temporal Lobe Epilepsy (TLE) suffer from widespread subtle white matter abnormalities and abnormal functional connectivity extending beyond the affected lobe, as revealed by Diffusion Tensor MR Imaging, volumetric and functional MRI studies. Diffusion Spectrum Imaging (DSI) is a diffusion imaging technique with high angular resolution for improving the mapping of white matter pathways. In this study, we used DSI, connectivity matrices and topological measures to investigate how the alteration in structural connectivity influences whole brain structural networks. Eleven patients with right-sided TLE and hippocampal sclerosis and 18 controls underwent our DSI protocol at 3T. The cortical and subcortical grey matters were parcellated into 86 regions of interest and the connectivity between every region pair was estimated using global tractography and a connectivity matrix (the adjacency matrix of the structural network). We then compared the networks of patients and controls using topological measures. In patients, we found a higher characteristic path length and a lower clustering coefficient compared to controls. Local measures at node level of the clustering and efficiency showed a significant difference after a multiple comparison correction (Bonferroni). These significant nodes were located within as well outside the temporal lobe, and the localisation of most of them was consistent with regions known to be part of epileptic networks in TLE. Our results show altered connectivity patterns that are concordant with the mapping of functional epileptic networks in patients with TLE. Further studies are needed to establish the relevance of these findings for the propagation of epileptic activity, cognitive deficits in medial TLE and outcome of epilepsy surgery in individual patients.
Resumo:
This paper presents a study of connection availability in GMPLS over optical transport networks (OTN) taking into account different network topologies. Two basic path protection schemes are considered and compared with the no protection case. The selected topologies are heterogeneous in geographic coverage, network diameter, link lengths, and average node degree. Connection availability is also computed considering the reliability data of physical components and a well-known network availability model. Results show several correspondences between suitable path protection algorithms and several network topology characteristics
Resumo:
A character network represents relations between characters from a text; the relations are based on text proximity, shared scenes/events, quoted speech, etc. Our project sketches a theoretical framework for character network analysis, bringing together narratology, both close and distant reading approaches, and social network analysis. It is in line with recent attempts to automatise the extraction of literary social networks (Elson, 2012; Sack, 2013) and other studies stressing the importance of character- systems (Woloch, 2003; Moretti, 2011). The method we use to build the network is direct and simple. First, we extract co-occurrences from a book index, without the need for text analysis. We then describe the narrative roles of the characters, which we deduce from their respective positions in the network, i.e. the discourse. As a case study, we use the autobiographical novel Les Confessions by Jean-Jacques Rousseau. We start by identifying co-occurrences of characters in the book index of our edition (Slatkine, 2012). Subsequently, we compute four types of centrality: degree, closeness, betweenness, eigenvector. We then use these measures to propose a typology of narrative roles for the characters. We show that the two parts of Les Confessions, written years apart, are structured around mirroring central figures that bear similar centrality scores. The first part revolves around the mentor of Rousseau; a figure of openness. The second part centres on a group of schemers, depicting a period of deep paranoia. We also highlight characters with intermediary roles: they provide narrative links between the societies in the life of the author. The method we detail in this complete case study of character network analysis can be applied to any work documented by an index. Un réseau de personnages modélise les relations entre les personnages d'un récit : les relations sont basées sur une forme de proximité dans le texte, l'apparition commune dans des événements, des citations dans des dialogues, etc. Notre travail propose un cadre théorique pour l'analyse des réseaux de personnages, rassemblant narratologie, close et distant reading, et analyse des réseaux sociaux. Ce travail prolonge les tentatives récentes d'automatisation de l'extraction de réseaux sociaux tirés de la littérature (Elson, 2012; Sack, 2013), ainsi que les études portant sur l'importance des systèmes de personnages (Woloch, 2003; Moretti, 2011). La méthode que nous utilisons pour construire le réseau est directe et simple. Nous extrayons les co-occurrences d'un index sans avoir recours à l'analyse textuelle. Nous décrivons les rôles narratifs des personnages en les déduisant de leurs positions relatives dans le réseau, donc du discours. Comme étude de cas, nous avons choisi le roman autobiographique Les Confessions, de Jean- Jacques Rousseau. Nous déduisons les co-occurrences entre personnages de l'index présent dans l'édition Slatkine (Rousseau et al., 2012). Sur le réseau obtenu, nous calculons quatre types de centralité : le degré, la proximité, l'intermédiarité et la centralité par vecteur propre. Nous utilisons ces mesures pour proposer une typologie des rôles narratifs des personnages. Nous montrons que les deux parties des Confessions, écrites à deux époques différentes, sont structurées autour de deux figures centrales, qui obtiennent des mesures de centralité similaires. La première partie est construite autour du mentor de Rousseau, qui a symbolisé une grande ouverture. La seconde partie se focalise sur un groupe de comploteurs, et retrace une période marquée par la paranoïa chez l'auteur. Nous mettons également en évidence des personnages jouant des rôles intermédiaires, et de fait procurant un lien narratif entre les différentes sociétés couvrant la vie de l'auteur. La méthode d'analyse des réseaux de personnages que nous décrivons peut être appliquée à tout texte de fiction comportant un index.
Resumo:
Objective: To build a theoretical model to configure the network social support experience of people involved in home care. Method: A quantitative approach research, utilizing the Grounded Theory method. The simultaneous data collection and analysis allowed the interpretation of the phenomenon meaning The network social support of people involved in home care. Results: The population passive posture in building their well-being was highlighted. The need of a shared responsibility between the involved parts, population and State is recognized. Conclusion: It is suggested for nurses to be stimulated to amplify home care to attend the demands of caregivers; and to elaborate new studies with different populations, to validate or complement the proposed theoretical model.
Resumo:
AbstractOBJECTIVEAnalyze adolescents' perceptions about support networks and their health needs.METHODAnalytical and interpretive study using focus groups conducted in municipal state schools in Fortaleza, in the State of Ceará during the first semester of 2012. The sample comprised 36 male and female adolescents aged between 13 and 16 years attending the ninth grade of the second phase of elementary school.RESULTSThematic analysis revealed that the health care support network and interaction between health professionals, education professionals and family members was insufficient, constituting a lack of an integrated network to enable and provide support for health promotion.CONCLUSIONCoordination between education, health and family services has the potential to act as a support network to help meet adolescents' healthcare needs and demands.
Resumo:
We use network and correspondence analysis to describe the compositionof the research networks in the European BRITE--EURAM program. Our mainfinding is that 27\% of the participants in this program fall into one oftwo sets of highly ``interconnected'' institutions --one centered aroundlarge firms (with smaller firms and research centers providing specializedservices), and the other around universities--. Moreover, these ``hubs''are composed largely of institutions coming from the technologically mostadvanced regions of Europe. This is suggestive of the difficulties of attainingEuropean ``cohesion'', as technically advanced institutions naturally linkwith partners of similar technological capabilities.
Resumo:
This work proposes novel network analysis techniques for multivariate time series.We define the network of a multivariate time series as a graph where verticesdenote the components of the process and edges denote non zero long run partialcorrelations. We then introduce a two step LASSO procedure, called NETS, toestimate high dimensional sparse Long Run Partial Correlation networks. This approachis based on a VAR approximation of the process and allows to decomposethe long run linkages into the contribution of the dynamic and contemporaneousdependence relations of the system. The large sample properties of the estimatorare analysed and we establish conditions for consistent selection and estimation ofthe non zero long run partial correlations. The methodology is illustrated with anapplication to a panel of U.S. bluechips.
Resumo:
BACKGROUND: The nuclear receptors are a large family of eukaryotic transcription factors that constitute major pharmacological targets. They exert their combinatorial control through homotypic heterodimerisation. Elucidation of this dimerisation network is vital in order to understand the complex dynamics and potential cross-talk involved. RESULTS: Phylogeny, protein-protein interactions, protein-DNA interactions and gene expression data have been integrated to provide a comprehensive and up-to-date description of the topology and properties of the nuclear receptor interaction network in humans. We discriminate between DNA-binding and non-DNA-binding dimers, and provide a comprehensive interaction map, that identifies potential cross-talk between the various pathways of nuclear receptors. CONCLUSION: We infer that the topology of this network is hub-based, and much more connected than previously thought. The hub-based topology of the network and the wide tissue expression pattern of NRs create a highly competitive environment for the common heterodimerising partners. Furthermore, a significant number of negative feedback loops is present, with the hub protein SHP [NR0B2] playing a major role. We also compare the evolution, topology and properties of the nuclear receptor network with the hub-based dimerisation network of the bHLH transcription factors in order to identify both unique themes and ubiquitous properties in gene regulation. In terms of methodology, we conclude that such a comprehensive picture can only be assembled by semi-automated text-mining, manual curation and integration of data from various sources.
Resumo:
Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.