557 resultados para nauru
Molecular characterization of Dengue viruses type 1 and 2 isolated from a concurrent human infection
Resumo:
In 2001, an autochthonous case of dual viremia, resulting from naturally acquired dengue virus DEN-1 and DEN-2 infections was detected during the dengue outbreak that occurred in Barretos, a city with about 105,000 inhabitants in the North region of São Paulo State. Serotype identification was based on virus isolation to C6/36 mosquito cells culture and immunofluorescence assays using type-specific monoclonal antibodies. The double infection was also confirmed by reverse transcriptase polymerase chain reaction (RT-PCR). Comparative analysis of the 240-nucleotide sequences of E/NS1 gene junction region between the genome of DEN-1 and DEN-2 isolates of the corresponding reference Nauru and PR 159S1 strains, respectively, showed some nucleotide differences, mainly silent mutations in the third codon position. Results of maximum likelihood phylogenetic analysis of E/NS1 gene sequences indicated that both genotypes of DEN-1 and DEN-2 viruses recovered from double infection in Barretos belonged to genotypes I and III, respectively.
Resumo:
Ihmiset. Naurava ihmisjoukko. Muutamat siirtyvät supattamaan kirjastoon.
Resumo:
Joukko miehiä ja naisia nauraa. Ensin lyhyitä pyrskähdyksiä, jonka jälkeen yleisempää naurua. Välissä yskähdyksiä.
Resumo:
Naurua, miehiä ja naisia.
Resumo:
Nauruja. Ensin naisia, sitten mies. Lopussa käsiteltyä synteettistä ääntä, nauru pitkittyy ja venyy luonnottomaksi.
Resumo:
Joukko miehiä ja naisia nauraa. Nauru loppuu välillä ja alkaa uudestaan.
Resumo:
Naisten hihitystä.
Resumo:
Joukko miehiä ja naisia räjähtää nauruun.
Resumo:
Japanilaisia opiskelijoita, markkinat, ruoka-annosten kaupustelua. Hirosaki, Japani.
Resumo:
Kirjallisuusarvostelu
Resumo:
Empirical studies using satellite data and radiosondes have shown that precipitation increases with column water vapor (CWV) in the tropics, and that this increase is much steeper above some critical CWV value. Here, eight years of 1-min-resolution microwave radiometer and optical gauge data at Nauru Island are analyzed to better understand the relationships among CWV, column liquid water (CLW), and precipitation at small time scales. CWV is found to have large autocorrelation times compared with CLW and precipitation. Before precipitation events, CWV increases on both a synoptic-scale time period and a subsequent shorter time period consistent with mesoscale convective activity; the latter period is associated with the highest CWV levels. Probabilities of precipitation increase greatly with CWV. Given initial high CWV, this increased probability of precipitation persists at least 10–12 h. Even in periods of high CWV, however, probabilities of initial precipitation in a 5-min period remain low enough that there tends to be a lag before the start of the next precipitation event. This is consistent with precipitation occurring stochastically within environments containing high CWV, with the latter being established by a combination of synoptic-scale and mesoscale forcing.
Resumo:
The vertical structure of the relationship between water vapor and precipitation is analyzed in 5 yr of radiosonde and precipitation gauge data from the Nauru Atmospheric Radiation Measurement (ARM) site. The first vertical principal component of specific humidity is very highly correlated with column water vapor (CWV) and has a maximum of both total and fractional variance captured in the lower free troposphere (around 800 hPa). Moisture profiles conditionally averaged on precipitation show a strong association between rainfall and moisture variability in the free troposphere and little boundary layer variability. A sharp pickup in precipitation occurs near a critical value of CWV, confirming satellite-based studies. A lag–lead analysis suggests it is unlikely that the increase in water vapor is just a result of the falling precipitation. To investigate mechanisms for the CWV–precipitation relationship, entraining plume buoyancy is examined in sonde data and simplified cases. For several different mixing schemes, higher CWV results in progressively greater plume buoyancies, particularly in the upper troposphere, indicating conditions favorable for deep convection. All other things being equal, higher values of lower-tropospheric humidity, via entrainment, play a major role in this buoyancy increase. A small but significant increase in subcloud layer moisture with increasing CWV also contributes to buoyancy. Entrainment coefficients inversely proportional to distance from the surface, associated with mass flux increase through a deep lower-tropospheric layer, appear promising. These yield a relatively even weighting through the lower troposphere for the contribution of environmental water vapor to midtropospheric buoyancy, explaining the association of CWV and buoyancy available for deep convection.