873 resultados para multi-feature control
Resumo:
This paper presents a multi-agent system approach to address the difficulties encountered in traditional SCADA systems deployed in critical environments such as electrical power generation, transmission and distribution. The approach models uncertainty and combines multiple sources of uncertain information to deliver robust plan selection. We examine the approach in the context of a simplified power supply/demand scenario using a residential grid connected solar system and consider the challenges of modelling and reasoning with
uncertain sensor information in this environment. We discuss examples of plans and actions required for sensing, establish and discuss the effect of uncertainty on such systems and investigate different uncertainty theories and how they can fuse uncertain information from multiple sources for effective decision making in
such a complex system.
Resumo:
We present a new dual-gas multi-jet HHG source which can be perfectly controlled via phasematching of the long and short trajectory contributions and is applicable for high average power driver laser systems. © 2011 Optical Society of America.
Resumo:
In multi-terminal high voltage direct current (HVDC) grids, the widely deployed droop control strategies will cause a non-uniform voltage deviation on the power flow, which is determined by the network topology and droop settings. This voltage deviation results in an inconsistent power flow pattern when the dispatch references are changed, which could be detrimental to the operation and seamless integration of HVDC grids. In this paper, a novel droop setting design method is proposed to address this problem for a more precise power dispatch. The effects of voltage deviations on the power sharing accuracy and transmission loss are analysed. This paper shows that there is a trade-off between minimizing the voltage deviation, ensuring a proper power delivery and reducing the total transmission loss in the droop setting design. The efficacy of the proposed method is confirmed by simulation studies.
Resumo:
Background: Recruitment rates in multi-centre randomised trials often fall below target recruitment rates, causing problems for study outcomes. The Studies Within A Trial (SWAT) Programme, established by the All-Ireland Hub for Trials Methodology Research in collaboration with the Medical Research Council Network of Hubs in the United Kingdom and others, is developing methods for evaluating aspects of trial methodology through the conduct of research within research. A recently published design for a SWAT-1 provides a protocol for evaluating the effect of a site visit by the principal investigator on recruitment in multi-centre trials.
Methods: Using the SWAT-1 design, the effect of a site visit, with the sole purpose of discussing trial recruitment, on recruitment rates in a large multicentre trial in the Republic of Ireland was evaluated. A controlled before and after intervention comparison was used, where the date of the site visit provides the time point for the intervention, and for the comparison to control sites. Site A received the intervention. Site B and Site C acted as the controls. Z-scores for proportions were calculated to determine within site recruitment differences. Odds ratios and 95% confidence intervals were calculated to determine between site recruitment differences.
Results: Recruitment rates were increased in Site A post-intervention (17% and 14% percentage point increases at 1 and 3 months, respectively). No differences in recruitment occurred in Site B or in Site C. Comparing between site differences, at 3 months post-intervention, a statistically significant difference was detected in favour of higher recruitment in Site A (34% versus 25%; odds ratio 1.57, 95% confidence interval 1.09 to 2.26).
Conclusions: This is the first reported example of a study in the SWAT programme.. It provides evidence that a site visit, combined with a scheduled meeting, increases recruitment in a clinical trial. Using this example, other researchers might be encouraged to consider conducting a similar study, allowing the findings of future SWAT-1s to be compared and combined, so that higher level evidence on the effect of a site visit by the principal investigator can be obtained.
Adaptive backstepping droop controller design for multi-terminal high-voltage direct current systems
Resumo:
Wind power is one of the most developed renewable energy resources worldwide. To integrate offshore wind farms to onshore grids, the high-voltage direct current (HVDC) transmission cables interfaced with voltage source converters (VSCs) are considered to be a better solution than conventional approaches. Proper DC voltage indicates successive power transfer. To connect more than one onshore grid, the DC voltage droop control is one of the most popular methods to share the control burden between different terminals. However, the challenges are that small droop gains will cause voltage deviations, while higher droop gain settings will cause large oscillations. This study aims to enhance the performance of the traditional droop controller by considering the DC cable dynamics. Based on the backstepping control concept, DC cables are modelled with a series of capacitors and inductors. The final droop control law is deduced step-by-step from the original remote side. At each step the control error from the previous step is considered. Simulation results show that both the voltage deviations and oscillations can be effectively reduced using the proposed method. Further, power sharing between different terminals can be effectively simplified such that it correlates linearly with the droop gains, thus enabling simple yet accurate system operation and control.
Resumo:
This paper proposes a new methodology for solving the unmanned multi-vehicle formation control problem. It employs a unique “extension-decomposition-aggregation” scheme to transform the overall complex formation control problem to a group of sub-problems which work via boundary interactions. The H∞ robust control strategy is applied to design the decentralised formation controllers to reject the interactions and work jointly to maintain the stability of the overall formation. Simulation studies have been performed to verify its performance and effectiveness.
Resumo:
This paper proposes a hierarchical energy management system for multi-source multi-product (MSMP) microgrids. Traditional energy hub based scheduling method is combined with a hierarchical control structure to incorporate transient characteristics of natural gas flow and dynamics of energy converters in microgrids. The hierarchical EMS includes a supervisory control layer, an optimizing control layer, and an execution control layer. In order to efficiently accommodate the systems multi time-scale characteristics, the optimizing control layer is decomposed into three sub-layers: slow, medium and fast. Thermal, gas and electrical management systems are integrated into the slow, medium, and fast control layer, respectively. Compared with wind energy, solar energy is easier to integrate and more suitable for the microgrid environment, therefore, potential impacts of the hierarchical EMS on MSMP microgrids is investigated based on a building energy system integrating photovoltaic and microturbines. Numerical studies indicate that by using a hierarchical EMS, MSMP microgrids can be economically operated. Also, interactions among thermal, gas, and electrical system can be effectively managed.
Resumo:
High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.
Resumo:
Distributed control techniques can allow Transmission System Operators (TSOs) to coordinate their responses via TSO-TSO communication, providing a level of control that lies between that of centralised control and communication free decentralised control of interconnected power systems. Recently the Plug and Play Model Predictive Control (PnPMPC) toolbox has been developed in order to allow practitioners to design distributed controllers based on tube-MPC techniques. In this paper, some initial results using the PnPMPC toolbox for the design of distributed controllers to enhance AGC in AC areas connected to Multi-Terminal HVDC (MTDC) grids, are illustrated, in order to evaluate the feasibility of applying PnPMPC for this purpose.
Resumo:
This paper employs a unique extension-decomposition-aggregation (EDA) scheme to solve the formation flight control problem for multiple unmanned aerial vehicles (UAVs). The corresponding decentralised longitudinal and lateral formation autopilots are novelly designed to maintain the overall formation stability when encountering changes of the formation error and topologies. The concept of propagation layer number (PLN) is also proposed to provide an intuitive criterion to judge which type of formation topology is more suitable to minimise formation error propagation (FEP). The criterion states that the smaller the PLN of the formation is, the quicker the response to the formation error is. A smaller PLN also means that the resulting topology provides better prevention to the FEP. Simulation studies of formation flight of multiple Aerosonde UAVs demonstrate that the designed formation controller based on the EDA strategy performs satisfactorily in maintaining the overall formation stable, and the bidirectional partial-mesh topology is found to provide the best overall response to the formation error propagation based on the PLN criterion.
Resumo:
In this paper, we propose a sparse multi-carrier index keying (MCIK) method for orthogonal frequency division multiplexing (OFDM) system, which uses the indices of sparse sub-carriers to transmit the data, and improve the performance
of signal detection in highly correlated sub-carriers. Although a receiver is able to exploit a power gain with precoding in OFDM, the sensitivity of the signal detection is usually high as the orthogonality is not retained in highly dispersive
environments. To overcome this, we focus on developing the trade-off between the sparsity of the MCIK, correlation, and performances, analyzing the average probability of the error propagation imposed by incorrect index detection over highly correlated sub-carriers. In asymptotic cases, we are able to see how sparsity of MCIK should be designed in order to perform superior to the classical OFDM system. Based on this feature, sparse MCIK based OFDM is a better choice for low detection errors in highly correlated sub-carriers.
Resumo:
Ancient columns, made with a variety of materials such as marble, granite, stone or masonry are an important part of the
European cultural heritage. In particular columns of ancient temples in Greece and Sicily which support only the architrave are
characterized by small axial load values. This feature together with the slenderness typical of these structural members clearly
highlights as the evaluation of the rocking behaviour is a key aspect of their safety assessment and maintenance. It has to be noted
that the rocking response of rectangular cross-sectional columns modelled as monolithic rigid elements, has been widely investigated
since the first theoretical study carried out by Housner (1963). However, the assumption of monolithic member, although being
widely used and accepted for practical engineering applications, is not valid for more complex systems such as multi-block columns
made of stacked stone blocks, with or without mortar beds. In these cases, in fact, a correct analysis of the system should consider
rocking and sliding phenomena between the individual blocks of the structure. Due to the high non-linearity of the problem, the
evaluation of the dynamic behaviour of multi-block columns has been mostly studied in the literature using a numerical approach
such as the Discrete Element Method (DEM). This paper presents an introductory study about a proposed analytical-numerical
approach for analysing the rocking behaviour of multi-block columns subjected to a sine-pulse type ground motion. Based on the
approach proposed by Spanos (2001) for a system made of two rigid blocks, the Eulero-Lagrange method to obtain the motion
equations of the system is discussed and numerical applications are performed with case studies reported in the literature and with a
real acceleration record. The rocking response of single block and multi-block columns is compared and considerations are made
about the overturning conditions and on the effect of forcing function’s frequency.
.
Resumo:
Management control in public university hospitals is a challenging task because of continuous changes due to external pressures (e.g. economic pressures, stakeholder focuses and scientific progress) and internal complexities (top management turnover, shared leadership, technological evolution, and researcher oriented mission). Interactive budgeting contributed to improving vertical and horizontal communication between hospital and stakeholders and between different organizational levels. This paper describes an application of Analytic Hierarchy Process (AHP) to enhance interactive budgeting in one of the biggest public university hospital in Italy. AHP improved budget allocation facilitating elicitation and formalization of units' needs. Furthermore, AHP facilitated vertical communication among manager and stakeholders, as it allowed multilevel hierarchical representation of hospital needs, and horizontal communication among staff of the same hospital, as it allowed units' need prioritization and standardization, with a scientific multi-criteria approach, without using complex mathematics. Finally, AHP allowed traceability of a complex decision making processes (as budget allocation), this aspect being of paramount importance in public sectors, where managers are called to respond to many different stakeholders about their choices.
Resumo:
Congestion control in wireless networks is an important and open issue. Previous research has proven the poor performance of the Transport Control Protocol (TCP) in such networks. The factors that contribute to the poor performance of TCP in wireless environments concern its unsuitability to identify/detect and react properly to network events, its TCP window based ow control algorithm that is not suitable for the wireless channel, and the congestion collapse due to mobility. New rate based mechanisms have been proposed to mitigate TCP performance in wired and wireless networks. However, these mechanisms also present poor performance, as they lack of suitable bandwidth estimation techniques for multi-hop wireless networks. It is thus important to improve congestion control performance in wireless networks, incorporating components that are suitable for wireless environments. A congestion control scheme which provides an e - cient and fair sharing of the underlying network capacity and available bandwidth among multiple competing applications is crucial to the definition of new e cient and fair congestion control schemes on wireless multi-hop networks. The Thesis is divided in three parts. First, we present a performance evaluation study of several congestion control protocols against TCP, in wireless mesh and ad-hoc networks. The obtained results show that rate based congestion control protocols need an eficient and accurate underlying available bandwidth estimation technique. The second part of the Thesis presents a new link capacity and available bandwidth estimation mechanism denoted as rt-Winf (real time wireless inference). The estimation is performed in real-time and without the need to intrusively inject packets in the network. Simulation results show that rt-Winf obtains the available bandwidth and capacity estimation with accuracy and without introducing overhead trafic in the network. The third part of the Thesis proposes the development of new congestion control mechanisms to address the congestion control problems of wireless networks. These congestion control mechanisms use cross layer information, obtained by rt-Winf, to accurately and eficiently estimate the available bandwidth and the path capacity over a wireless network path. Evaluation of these new proposed mechanisms, through ns-2 simulations, shows that the cooperation between rt-Winf and the congestion control algorithms is able to significantly increase congestion control eficiency and network performance.
Resumo:
The performance of real-time networks is under continuous improvement as a result of several trends in the digital world. However, these tendencies not only cause improvements, but also exacerbates a series of unideal aspects of real-time networks such as communication latency, jitter of the latency and packet drop rate. This Thesis focuses on the communication errors that appear on such realtime networks, from the point-of-view of automatic control. Specifically, it investigates the effects of packet drops in automatic control over fieldbuses, as well as the architectures and optimal techniques for their compensation. Firstly, a new approach to address the problems that rise in virtue of such packet drops, is proposed. This novel approach is based on the simultaneous transmission of several values in a single message. Such messages can be from sensor to controller, in which case they are comprised of several past sensor readings, or from controller to actuator in which case they are comprised of estimates of several future control values. A series of tests reveal the advantages of this approach. The above-explained approach is then expanded as to accommodate the techniques of contemporary optimal control. However, unlike the aforementioned approach, that deliberately does not send certain messages in order to make a more efficient use of network resources; in the second case, the techniques are used to reduce the effects of packet losses. After these two approaches that are based on data aggregation, it is also studied the optimal control in packet dropping fieldbuses, using generalized actuator output functions. This study ends with the development of a new optimal controller, as well as the function, among the generalized functions that dictate the actuator’s behaviour in the absence of a new control message, that leads to the optimal performance. The Thesis also presents a different line of research, related with the output oscillations that take place as a consequence of the use of classic co-design techniques of networked control. The proposed algorithm has the goal of allowing the execution of such classical co-design algorithms without causing an output oscillation that increases the value of the cost function. Such increases may, under certain circumstances, negate the advantages of the application of the classical co-design techniques. A yet another line of research, investigated algorithms, more efficient than contemporary ones, to generate task execution sequences that guarantee that at least a given number of activated jobs will be executed out of every set composed by a predetermined number of contiguous activations. This algorithm may, in the future, be applied to the generation of message transmission patterns in the above-mentioned techniques for the efficient use of network resources. The proposed task generation algorithm is better than its predecessors in the sense that it is capable of scheduling systems that cannot be scheduled by its predecessor algorithms. The Thesis also presents a mechanism that allows to perform multi-path routing in wireless sensor networks, while ensuring that no value will be counted in duplicate. Thereby, this technique improves the performance of wireless sensor networks, rendering them more suitable for control applications. As mentioned before, this Thesis is centered around techniques for the improvement of performance of distributed control systems in which several elements are connected through a fieldbus that may be subject to packet drops. The first three approaches are directly related to this topic, with the first two approaching the problem from an architectural standpoint, whereas the third one does so from more theoretical grounds. The fourth approach ensures that the approaches to this and similar problems that can be found in the literature that try to achieve goals similar to objectives of this Thesis, can do so without causing other problems that may invalidate the solutions in question. Then, the thesis presents an approach to the problem dealt with in it, which is centered in the efficient generation of the transmission patterns that are used in the aforementioned approaches.