991 resultados para methane aromatization
Resumo:
Ni catalysts supported on gamma-Al(2)O(3) and Mg(Al)O were prepared with and without Rh as a promoter and tested in the reforming of methane in the presence of excess methane, simulating a model biogas. The effects of adding synthetic air on the methane conversion and the formation of carbon were assessed. The catalysts were characterized by X-ray spectroscopy (EDS), surface area (BET), X-ray diffraction (XRD), Temperature-programmed reduction (TPR), X-ray absorption near-edge structure (XANES) and XPD. The results showed that in catalysts without Rh, the Ni interacts strongly with the supports, showing high reduction temperatures in TPR tests. The addition of Rh increased the amount of reducible Ni and facilitated the reduction of the species interacting strongly with the support. In the catalytic tests, the samples promoted with Rh suffered higher carbon deposition. The in situ XPD suggested that on the support gamma-Al(2)O(3), the presence of Rh probably led to a segregation of Ni species with time on stream, leading to carbon deposition. On the support MgAlO, the presence of Rh improved the dispersion of Ni, by reducing the Ni(0) crystallite size, suggesting that in this case the carbon deposition was due to a favoring of CH(4) decomposition by Rh. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
NiO/Al(2)O(3) catalyst precursors were prepared by simultaneous precipitation, in a Ni:Al molar ratio of 3:1, promoted with Mo oxide (0.05, 0.5, 1.0 and 2.0 wt%). The solids were characterized by adsorption of N(2), XRD, TPR, Raman spectroscopy and XPS, then activated by H(2) reduction and tested for the catalytic activity in methane steam reforming. The characterization results showed the presence of NiO and Ni(2)AlO(4) in the bulk and Ni(2)AlO(4) and/or Ni(2)O(3) and MoO(4)(-2) at the surface of the samples. In the catalytic tests, high stability was observed with a reaction feed of 4:1 steam/methane. However, at a steam/methane ratio of 2: 1, only the catalyst with 0.05% Mo remained stable throughout the 500 min of the test. The addition of Mo to Ni catalysts may have a synergistic effect, probably as a result of electron transfer from the molybdenum to the nickel, increasing the electron density of the catalytic site and hence the catalytic activity. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study evaluated the effect of diets containing sorghum silages with higher (HT) and lower-tannin (LT) concentrations supplemented with concentrate or urea on intake, digestibility, ruminal digestibility, methane emission and rumen parameters in beef cattle. Four treatments were distributed according to a 2 x 2 factorial arrangement in a duplicate 4 x 4 Latin square: LT sorghum silage + urea, LT sorghum silage + concentrate, HT sorghum silage + urea, and HT sorghum silage + concentrate. Total digestibility of the organic matter was higher when concentrate was included in the diet (0.749 and 0.753 in the LT and HT treatments, respectively). It was observed lower ruminal apparent digested matter of neutral detergent fiber in HT diets. There was no effect of tannin levels on digestibility and methane emission. The supplementation with concentrate in the LT diet decreased gas losses as a function of gross energy intake in comparison to the supplementation of the diet with urea. These results suggest the potential of concentrate supplementation to minimize energy loss as methane emission by ruminants and increase the efficiency of energy utilization. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Methane and carbon dioxide seasonal cycles during years 1998 and 1999 at two Brazilian urban and inland sites are presented. The mixing ratio averages over the studied period of time were 1.80 ppm CH4 and 384.7 ppm CO2. A comparison is made between continental averages and the averages of the three nearest global network background sites of NOAA-CMDL comprising Ascension Island, Namibia and Easter Island. Inland sites had 0.08 ppm or 4.9% more CH4 and 19.0 ppm or 4.9% more CO2 than background over the same time span. The CH4 summer minimum observed in remote sites was also detected inland. During the month of October 98 and 99 inland mixing ratios were frequently similar to background.
Resumo:
The fac-[RuCl3(NO)(dppm)] (1) and cis-[RuCl2(dppm)2] (2) complexes were obtained with co-crystallization in the solid state from the reaction of RuCl3(NO) with the diphosphine in dichloromethane. mer-[RuCl3(NO)(dppb)] (3) was obtained from [RuCl3(dppb)(H2O)] by bubbling NO for 30 min in the same solvent. The crystal and molecular structures of these three compounds have been determined from X-ray studies. © Elsevier Science Ltd.
Resumo:
The CO2 reforming of CH4 was carried out over Ni catalysts supported on γ-Al2O3 and CeO 2-promoted γ-Al2O3. The catalysts were characterized by means of surface area measurements, TPR, CO2 and H2 chemisorption, XRD, SEM, and TEM. The CeO2 addition promoted an increase of catalytic activity and stability. The improvement in the resistance to carbon deposition is attributed to the highest CO2 adsorption presented by the CeO2 addition. The catalytic behavior presented by the samples, with a different CH4/CO2 ratio used, points to the CH4 decomposition reaction as the main source of carbon deposition.
Resumo:
Catalytic activity and selectivity of niobate-based nanostructured materials were investigated. Dry methane reforming (DMR) and ethylene homologation reaction (EHR) were selected as test reactions. KSr 2Nb5O15, Sr2NaNb5O 15 and NaSr2(NiNb4)O15 δ niobate powders were prepared by the high energy ball milling method and calcined in a reductor atmosphere. N2 adsorption isotherms, X-ray diffraction and infrared spectroscopy characterization was performed. Hydrogen pretreated niobates showed from low to moderate catalytic initial activity in DMR's test, nevertheless the materials were deactivated rapidly and the kinetic parameters associated to deactivation were estimated. Otherwise, non-treated catalysts showed a high initial activity in EHR's test and KSr2Nb 5O15 catalyst requires 24 h to the total deactivation with a high selectivity to form propylene. A reaction mechanism to the propylene formation is discussed. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Using sorghum silage, the effect of roughage/concentrate ratios was evaluated on nutrient intake, digestibility, ruminal parameters and methane production by beef cattle. Three treatments (0, 30 and 60% of concentrate in DM of the diet) were distributed in three Latin squares, with nine animals and three periods. Dry matter intake increased as the grain concentration in diet increased; pH showed opposite behavior. Methane emissions were lower for animals fed the diet exclusively with sorghum silage as compared with those fed 30% of concentrate, but was similar to that of animals receiving 60% of concentrate. Losses of ingested gross energy as methane were reduced by 33% when grain concentration was increased in the diet. Concentrations of propionic and butyric acids were greater in diets with grain concentrate; acetic acid concentration was not affected. Concentrate in diet increases available energy for the metabolism, measured by lower losses of ingested gross energy as ruminal methane. © 2013 Sociedade Brasileira de Zootecnia.
Resumo:
This study presents the first results from Brazil using SF6 tracer technique adapted from cattle to evaluate the capability of condensed tannin (CT) present in three tropical legume forages, Leucaena leucocephala (LEU), Styzolobium aterrimum (STA), and Mimosa caesalpiniaefolia Benth (MIM) to reduce enteric CH4 production in Santa Ins sheep. Twelve male lambs [27.88 +/- 2.85 kg body weight (BW)] were allocated in individual metabolic cages for 20-day adaptation followed by 6 days for measuring dry matter intake (DMI) and CH4 emission. All lambs received water, mineral supplement, and Cynodon dactylon v. coast-cross hay ad libitum. The treatments consisted of soybean meal (710 g/kg) and ground corn (290 g/kg) [control (CON)]; soybean meal (150 g/kg), ground corn (30 g/kg), and Leucaena hay (820 g/kg) (LEU); soybean meal (160 g/kg), ground corn (150 g/kg), and Mucuna hay (690 g/kg) (STA); and soybean meal (280 g/kg), ground corn (190 g/kg), and Mimosa hay (530 g/kg) (MIM); all calculated to provide 40 g/kg CT (except for CON). DMI (in grams of DMI per kilogram BW per day) was lower for LEU (22.0) than CON (29.3), STA (31.2), and MIM (31.6). The LEU group showed emission of 7.8 g CH4/day, significantly lower than CON (10.5 g CH4/day), STA (10.4 g CH4/day), and MIM (11.3 g CH4/day). However, when the CH4 emission per DMI was considered, there were no significant differences among treatments (0.37, 0.36, 0.33, and 0.35 g CH4/g DMI/kg BW/day, respectively, for CON, LEU, STA, and MIM). The sheep receiving STA had shown a tendency (p = 0.15) to reduce methane emission when compared to the CON group. Therefore, it is suggested that tropical tanniniferous legumes may have potential to reduce CH4 emission in sheep, but more research is warranted to confirm these results.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Zootecnia - FCAV