971 resultados para metal ultrafine particles
Resumo:
We propose a definition of classical differential cross sections for particles with essentially nonplanar orbits, such as spinning ones. We give also a method for its computation. The calculations are carried out explicitly for electromagnetic, gravitational, and short-range scalar interactions up to the linear terms in the slow-motion approximation. The contribution of the spin-spin terms is found to be at best 10-6 times the post-Newtonian ones for the gravitational interaction.
Resumo:
We consider the coupling of quantum massless and massive scalar particles with exact gravitational plane waves. The cross section for scattering of the quantum particles by the waves is shown to coincide with the classical cross section for scattering of geodesics. The expectation value of the scalar field stress tensor between scattering states diverges at the points where classical test particles focus after colliding with the wave. This indicates that back-reaction effects cannot be ignored for plane waves propagating in the presence of quantum particles and that classical singularities are likely to develop.
Resumo:
We present a new class of sequential adsorption models in which the adsorbing particles reach the surface following an inclined direction (shadow models). Capillary electrophoresis, adsorption in the presence of a shear, and adsorption on an inclined substrate are physical manifestations of these models. Numerical simulations are carried out to show how the new adsorption mechanisms are responsible for the formation of more ordered adsorbed layers and have important implications in the kinetics, in particular, modifying the jamming limit.
Resumo:
We have studied the adsorption process of non-Brownian particles on a line. Our work differs from previously proposed models in that we have incorporated hydrodynamic interactions between the incoming particles and the preadsorbed particles as well as the surface. We then numerically analyze the effect of these interactions on quantities related to the adsorption process. Comparing our model to the ballistic deposition model (BM) shows a significant discrepancy in the pair correlation function. These results can explain some differences between recent experiments and BM predictions. Finally, the limitations of the applicability of BM are addressed.
Resumo:
Soils under natural conditions have heavy metals in variable concentrations and there may be an increase in these elements as a result of the agricultural practices adopted. Transport of heavy metals in soil mainly occurs in forms dissolved in the soil solution or associated with solid particles, water being their main means of transport. In this context, the aim of this study was to evaluate the heavy metal and micronutrient content in the soil and in the grapevine plant and fruit under different irrigation strategies. The experiment was carried out in Petrolina, PE, Brazil. The treatments consisted of three irrigation strategies: full irrigation (FI), regulated deficit irrigation (RDI), and deficit irrigation (DI). During the period of grape maturation, soil samples were collected at the depths of 0-10, 10-20, 20-40, 40-60, and 60-80 cm. In addition, leaves were collected at the time of ripening of the bunches, and berries were collected at harvest. Thus, the heavy metal and micronutrient contents were determined in the soil, leaves, and berries. The heavy metal and micronutrient contents in the soil showed a stochastic pattern in relation to the different irrigation strategies. The different irrigation strategies did not affect the heavy metal and micronutrient contents in the vine leaves, and they were below the contents considered toxic to the plant. In contrast, the greater availability of water in the FI treatment favored a greater Cu content in the grape, which may be a risk to vines, causing instability and turbidity. Thus, adoption of deficit irrigation is recommended so as to avoid compromising the stability of tropical wines of the Brazilian Northeast.
Resumo:
We have studied the relaxation dynamics of a dilute assembly of ferromagnetic particles in suspension. A formalism based on the Smoluchowski equation, describing the evolution of the probability density for the directions of the magnetic moment and of the axis of easy magnetization of the particles, has been developed. We compute the rotational viscosity from a Green-Kubo formula and give an expression for the relaxation time of the particles which comes from the dynamic equations of the correlation functions. Concerning the relaxation time for the particles, our results agree quite well with experiments performed on different samples of ferromagnetic particles for which the magnetic energy, associated with the interaction between the magnetic moments and the external field, or the energy of anisotropy plays a dominant role.
Resumo:
Alpha1-Acid glycoprotein (AAG) or orosomucoid was purified to homogeneity from human plasma by a separate two-step method using chromatography on immobilized Cibacron Blue F3G-A to cross-linked agarose and chromatography on hydroxyapatite. The conditions for the pre-purification of AAG by chromatography on immobilized Cibacron Blue F3G-A were first optimized using different buffer systems with different pH values. The overall yield of the combined techniques was 80% and ca. 12 mg of AAG were purified from an initial total amount of ca. 15 mg in a ca. 40 ml sample of human plasma. This method was applied to the purification of AAG samples corresponding to the three main phenotypes of the protein (FI*S/A, F1/A and S/A), from individual human plasma previously phenotyped for AAG. A study by isoelectric focusing with carrier ampholytes showed that the microheterogeneity of the purified F1*S/A, F1/A and S/A AAG samples was similar to that of AAG in the corresponding plasma, thus suggesting that no apparent desialylation of the glycoprotein occurred during the purification steps. This method was also applied to the purification of AAG samples corresponding to rare phenotypes of the protein (F1/A*AD, S/A*X0 and F1/A*C1) and the interactions of these variants with immobilized copper(II) ions were then studied at pH 7, by chromatography on an iminodiacetate Sepharose-Cu(II) gel. It was found that the different variants encoded by the first of the two genes coding for AAG in humans (i.e. the F1 and S variants) interacted non-specifically with the immobilized ligand, whereas those encoded by the second gene of AAG (i.e. the A, AD, X0 and C1 variants) strongly bound to immobilized Cu(II) ions. These results suggested that chromatography on an immobilized affinity Cu(II) adsorbent could be helpful to distinguish between the respective products of the two highly polymorphic genes which code for human AAG.
Resumo:
The dependence of the dynamic properties of liquid metals and Lennard-Jones fluids on the characteristics of the interaction potentials is analyzed. Molecular-dynamics simulations of liquids in analogous conditions but assuming that their particles interact either through a Lennard-Jones or a liquid-metal potential were carried out. The Lennard-Jones potentials were chosen so that both the effective size of the particles and the depth of the potential well were very close to those of the liquid-metal potentials. In order to investigate the extent to which the dynamic properties of liquids depend on the short-range attractive interactions as well as on the softness of the potential cores, molecular-dynamics simulations of the same systems but assuming purely repulsive interactions with the same potential cores were also performed. The study includes both singleparticle dynamic properties, such as the velocity autocorrelation functions, and collective dynamic properties, such as the intermediate scattering funcfunctions, and collective dynamic properties, such as the intermediate scattering functions, the dynamic structure factors, the longitudinal and transverse current correlations, and the transport coefficients.
Resumo:
We show that a dispersion of monodomain ferromagnetic particles in a solid phase exhibits stochastic resonance when a driven linearly polarized magnetic field is applied. By using an adiabatic approach, we calculate the power spectrum, the distribution of residence times, and the mean first passage time. The behavior of these quantities is similar to the behavior of corresponding quantities in other systems where stochastic resonance has also been observed.