959 resultados para matrix metalloproteinase-1
Resumo:
In this work, a new weakly hemorrhagic metalloproteinase (BthMP) was purified from Bothrops moojeni snake venom. This enzyme was homogeneous by native and SDS-PAGE. It showed a polypeptide chain of 23.5 kDa, pI=7.1, and N-terminal blocked. BthMP is comprised of high proteolytic activity on casein, fibrin and bovine fibrinogen, with no coagulating, esterase or phospholipase A(2) activities; it was inhibited by EDTA, EGTA and 1,10-phenanthroline and maintained its activity on pH from 7.0 to 9.0 and temperature from 5-40 degrees C. Assays with metal ions showed that Ca(2+) is an activator, whereas Zn(2+) and Hg(2+) inhibited about 50 and 80% of its activity, respectively. The edema evidenced the important role of the toxin in the inflammatory activity of the venom. BthMP also caused unclotting, and provoked histological alterations in the gastrocnemius muscle of mice inducing hemorrhage, necrosis and leukocytic infiltrate. The molecular mass and the inhibition assays suggest that the metal loproteinase BthMP belongs to class P-I of SVMPs. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.
Resumo:
The A(n-1)((1)) trigonometric vertex model with generic non-diagonal boundaries is studied. The double-row transfer matrix of the model is diagonalized by algebraic Bethe ansatz method in terms of the intertwiner and the corresponding face-vertex relation. The eigenvalues and the corresponding Bethe ansatz equations are obtained.
Resumo:
This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.
Resumo:
Flash vacuum thermolysis (FVT) of triazoles 6a-c generates alpha-oxoketenimines 10, the ester 10a being isolable. FVT of pyrroledione 8 generates the isomeric imidoylketene 9a. Ketenes 9 and ketenimines 10 undergo thermal interconversion by 1,3-shifts of methoxy and dimethylamino groups under mild FVT conditions (ca. 350-400 degrees C). Both 9 and 10 are directly observable by IR spectroscopy at either 77 K or on Ar matrix isolation at 12 K. On FVT at temperatures above ca. 400 degrees C, the ketenimines 10 undergo a 1,5-H shift to o-quinoid imines 12/13, followed by electrocyclization to dihydroquinolines 14 (unobserved) and 15 (observed by NMR). The latter are easily oxidized to alkylquinoline-3-carboxylates or quinoline-3-carboxamides 16 by atmospheric oxygen. Ab initio calculations on model compounds 18-23 predict an energy barrier of ca. 38 kcal mol(-1) (161 kJ mol(-1)) for the 1,5-H shift in N-(o-methylphenyl)ketenimines via the transition state TS19 followed by an electrocyclization barrier to dihydroquinoline 23a via TS22a of ca. 16 kcal mol(-1).
Resumo:
The mRNA differential display technique was used to compare mRNAs between normal mammary gland and turner-derived epithelial cells from female Sprague-Dawley rat mammary gland tumors induced by the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and promoted by a high-fat diet (23.5% corn oil). Two genes, beta-casein and transferrin, were identified as differentially expressed. The expression of these genes was examined across a bank of rat mammary gland tumors derived from animals on a low-fat diet (5% corn oil) or the high-fat diet. Carcinomas had over a 10- and 50-fold lower expression of beta-casein and transferrin, respectively than normal mammary gland. In addition, carcinomas from animals on the high-fat diet showed on average a 5-fold higher expression of beta-casein, and transferrin than carcinomas from animals on the low-fat diet. The results indicate the process of mammary gland tumorigenesis alters the expression of certain genes in the mammary gland, and that the level of dietary fat further modulates the expression of these genes.
Resumo:
The 32-residue peptide, RK-1, a novel kidney-derived three disulfide-bonded member of the antimicrobial alpha-defensin family, was synthesized by the continuous now Fmoc-solid phase method. The crude, cleaved and S-reduced Linear peptide was both efficiently folded and oxidized in an acidic solution of aqueous dimethyl sulfoxide. Following purification of the resulting product, it was shown by a variety of analytical techniques, including matrix assisted laser desorption time of flight mass spectrometry, to possess a very high degree of purity. The disulfide bond pairing of the synthetic peptide was determined by H-1-NMR spectroscopy and confirmed to be a Cys(1)-Cys(6), Cys(2)-Cys(4), Cys(3)-Cys(5) arrangement similar to other mammalian alpha-defensin peptides. The synthetic RK-1 was also shown to inhibit the growth of Escherichia coli type strain NCTC 10418, Copyright (C) 2000 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
H-1- and C-13-NMR spectroscopy and FT-Raman spectroscopy are used to investigate the properties of a polymer gel dosimeter post-irradiation. The polymer gel (PACT) is composed of acrylamide, N,N'-methylene-bisacrylamide, gelatin, and water. The formation of a polyacrylamide network within the gelatin matrix follows a dose dependence nonlinearly correlated to the disappearance of the double bonds from the dissolved monomers within the absorbed dose range of 0-50 Gy. The signal from the gelatin remains constant with irradiation. We show that the NMR spin-spin relaxation times (T-2) of PAGs irradiated to up to 50 Gy measured in a NMR spectrometer and a clinical magnetic resonance imaging scanner can be modeled using the spectroscopic intensity of the growing polymer network. More specifically, we show that the nonlinear T-2 dependence against dose can be understood in terms of the fraction of protons in three different proton pools. (C) 2000 John Wiley & Sons, Inc.
Resumo:
A multiparametric extension of the anisotropic U model is discussed which maintains integrability. The R-matrix solving the Yang-Baxter equation is obtained through a twisting construction applied to the underlying U-q(sl (2/1)) superalgebraic structure which introduces the additional free parameters that arise in the model. Three forms of Bethe ansatz solution for the transfer matrix eigenvalues are given which we show to be equivalent.
Resumo:
We have characterized the kinetic properties of ectonucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1) from rat osseous plate membranes. A novel finding of the present study is that the solubilized enzyme shows high- and low-affinity sites for the substrate in contrast with a single substrate site for the membrane-bound enzyme. In addition, contrary to the Michaelian chraracteristics of the membrane-bound enzyme, the site-site interactions after solubilization with 0.5% digitonin plus 0.1% lysolecithin resulted in a less active ectonucleoside triphosphate diphosphohydrolase, showing activity of about 398.3 nmol Pi min(-1) mg(-1). The solubilized enzyme has M(r) of 66-72 kDa, and its catalytic efficiency was significantly increased by magnesium and calcium ions; but the ATP/ADP activity ratio was always < 2.0. Partial purification and kinetic characterization of the rat osseous plate E-NTPDase1 in a solubilized form may lead to a better understanding of a possible function of the enzyme as a modulator of nucleotidase activity or purinergic signaling in matrix vesicle membranes. The simple procedure to obtain the enzyme in a solubilized form may also be attractive for comparative studies of particular features of the active sites from this and other ATPases.
Resumo:
We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5`-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5`-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5`-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PPi were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1- containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PPi by TNAP-, and TNAP plus NPP1- containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.
Resumo:
We obtain a class of non-diagonal solutions of the reflection equation for the trigonometric A(n-1)((1)) vertex model. The solutions can be expressed in terms of intertwinner matrix and its inverse, which intertwine two trigonometric R-matrices. In addition to a discrete (positive integer) parameter l, 1 less than or equal to l less than or equal to n, the solution contains n + 2 continuous boundary parameters.
Resumo:
TNF-alpha neutralising agents such as Infliximab (Remicade(R)), Etanercept (Enbrel(R)) and the IL-1 receptor antagonist Anakinra (Kineret(R)), are currently used clinically for the treatment of many inflammatory diseases such as Crohn's disease, rheumatoid arthritis, ankylosing spondylitis, juvenile rheumatoid arthritis, psoriatic arthritis and psoriasis. These protein preparations are expensive to manufacture and administer, need to be injected and can cause allergic reactions. An alternative approach to lowering the levels of TNF-alpha and IL-1 beta in inflammatory disease, is to inhibit the enzymes that generate these cytokines using cheaper small molecules. This paper is a broad overview of the progress that has been achieved so far, with respect to small molecule inhibitor design and pharmacological studies (in animals and humans), for the metalloprotease Tumour Necrosis Factor-alpha Converting Enzyme (TACE) and the cysteine protease Caspase-1 (Interieukin-1 beta Converting Enzyme, ICE). Inhibitors of these two enzymes are currently considered to be good therapeutic targets that have the potential to provide relatively inexpensive and orally bioavailable anti-inflammatory agents in the future.
Resumo:
The importance of lung tissue in asthma pathophysiology has been recently recognized. Although nitric oxide mediates smooth muscle tonus control in airways, its effects on lung tissue responsiveness have not been investigated previously. We hypothesized that chronic nitric oxide synthase (NOS) inhibition by N-omega-nitro-L-arginine methyl ester (L-NAME) may modulate lung tissue mechanics and eosinophil and extracellular matrix remodeling in guinea pigs with chronic pulmonary inflammation. Animals were submitted to seven saline or ovalbumin exposures with increasing doses (1 similar to 5 mg/ml for 4 wk) and treated or not with L-NAME in drinking water. After the seventh inhalation (72 h), animals were anesthetized and exsanguinated, and oscillatory mechanics of lung tissue strips were performed in baseline condition and after ovalbumin challenge (0.1%). Using morphometry, we assessed the density of eosinophils, neuronal NOS (nNOS)- and inducible NOS (iNOS)-positive distal lung cells, smooth muscle cells, as well as collagen and elastic fibers in lung tissue. Ovalbumin-exposed animals had an increase in baseline and maximal tissue resistance and elastance, eosinophil density, nNOS- and iNOS-positive cells, the amount of collagen and elastic fibers, and isoprostane-8-PGF(2 alpha) expression in the alveolar septa compared with controls (P < 0.05). L-NAME treatment in ovalbumin-exposed animals attenuated lung tissue mechanical responses (P < 0.01), nNOS- and iNOS-positive cells, elastic fiber content (P < 0.001), and isoprostane-8-PGF(2 alpha) in the alveolar septa (P < 0.001). However, this treatment did not affect the total number of eosinophils and collagen deposition. These data suggest that NO contributes to distal lung parenchyma constriction and to elastic fiber deposition in this model. One possibility may be related to the effects of NO activating the oxidative stress pathway.
Resumo:
Background: Structural and inflammatory changes in asthma involve both the large and small airways, with involvement of the distal lung being related to disease severity. We have previously shown that changes in the extracellular matrix (ECM) composition of the distal lung are associated with loss of alveolar attachments in patients with fatal asthma. However, major ECM elements, such as collagen I and fibronectin and their regulators, have not been addressed at the distal level. Objective: We sought to evaluate ECM remodeling in the distal lungs of asthmatic patients. Methods: Using immunohistochemistry and image analysis, we determined the content of collagen I and III, fibronectin, and matrix metalloproteinases; (MMPs) 1, 2, and 9 and tissue inhibitors of metalloproteinase (MMPs) 1 and 2 in the large and small airways and lung parenchyma of 24 patients with fatal asthma and compared the results with those of 11 nonasthmatic control subjects. Protein content was defined as the area of positive staining divided by basement membrane or septum length. Results: We observed increased collagen I and decreased collagen III content in the small airways of asthmatic patients compared with that seen in control subjects. Greater fibronectin and MMP-1, MMP-2, and MMP-9 content was observed at the outer area of the small airways in asthmatic patients. NIMP content was also increased in the peribronchiolar parenchyma in asthmatic patients. In contrast, TIMP expression was only increased in the large airways of asthmatic patients compared with that seen in control subjects. Conclusions: The outer area of the small airways is a major site of ECM remodeling in fatal asthma, potentially contributing to functional changes and the loss of airway-parenchyma interdependence observed in patients with fatal asthma. (J Allergy Clin Immunol 2009;123:1090-7.)