874 resultados para logic of influence (action)
Resumo:
This paper aims at developing a collision prediction model for three-leg junctions located in national roads (NR) in Northern Portugal. The focus is to identify factors that contribute for collision type crashes in those locations, mainly factors related to road geometric consistency, since literature is scarce on those, and to research the impact of three modeling methods: generalized estimating equations, random-effects negative binomial models and random-parameters negative binomial models, on the factors of those models. The database used included data published between 2008 and 2010 of 177 three-leg junctions. It was split in three groups of contributing factors which were tested sequentially for each of the adopted models: at first only traffic, then, traffic and the geometric characteristics of the junctions within their area of influence; and, lastly, factors which show the difference between the geometric characteristics of the segments boarding the junctionsâ area of influence and the segment included in that area were added. The choice of the best modeling technique was supported by the result of a cross validation made to ascertain the best model for the three sets of researched contributing factors. The models fitted with random-parameters negative binomial models had the best performance in the process. In the best models obtained for every modeling technique, the characteristics of the road environment, including proxy measures for the geometric consistency, along with traffic volume, contribute significantly to the number of collisions. Both the variables concerning junctions and the various national highway segments in their area of influence, as well as variations from those characteristics concerning roadway segments which border the already mentioned area of influence have proven their relevance and, therefore, there is a rightful need to incorporate the effect of geometric consistency in the three-leg junctions safety studies.
Resumo:
This Special Issue gathers selected contributions from experts of the action on several aspects of food structure design explored throughout the actions activity, from basic science to applications and behavior of foods during digestion.
Resumo:
Relatório de estágio de mestrado em Educação Pré-Escolar e Ensino do 1.º Ciclo do Ensino Básico
Resumo:
During the 19th century, the most prominent buildings of the city of Belém were faced entirely with tiles manufactured in Portugal and Germany, which now exhibit distinct degrees of degradation. The Pinho mansion is one of the most important of these buildings and was selected for the investigation of the action of the tropical Amazonian climate on the degradation of the tiles. To achieve this objective, the tiles were mapped for organic and inorganic degradation, and samples were collected for analysis. The minerals were determined by XRD, the chemical composition by classical wet methods and SEM/EDS, and the microorganisms under the microscope. The results show that the German and Portuguese tiles are quite different in their composition. While both ceramic bodies are composed of SiO2 and Al2O3, CaO was found only in the Portuguese tile. The low Na2O and K2O contents indicate the addition of materials to reduce the fusion temperature. SiO2 and PbO are the main constituents of the glaze, with CoO and FeO being added as pigment. The ceramic body of the German tiles is constituted of quartz, mullite, and cristobalite, in contrast with the Portuguese tiles, which are made of quartz, gehlenite, diopside, calcite, and feldspars. The glazes are XRD-amorphous. The chemical and mineralogical differences between the German and Portuguese tiles indicate that they were produced from different raw materials under distinct thermal processes. The most prominent weathering-related modifications are the thin layers (German tiles), oxidation stains, dark stains, the detachment of the tile (Portuguese tiles), loss of the glaze and powdering of the ceramic body (Portuguese tiles) through the establishment of Cyanophyta and Bacillariophyta.. The distinct degradation patterns of the tiles exposed to the tropical Amazon climate are a consequence of their distinct mineralogy and chemistry.
Resumo:
High-risk human papillomavirus (hrHPV) is an essential cause of cervical carcinoma and is also strongly related to anal cancer development. The hrHPV E6 oncoprotein plays a major role in carcinogenesis. We aimed to evaluate the frequency of hrHPV DNA and E6 oncoprotein in the anuses of women with cervical carcinoma. We analyzed 117 women with cervical cancer and 103 controls for hrHPV and the E6 oncogene. Positive test results for a cervical carcinoma included 66.7 % with hrHPV-16 and 7.7 % with hrHPV-18. One case tested positive for both HPV variants (0.9 %). The samples from the anal canal were positive for HPV-16 in 59.8 % of the cases. Simultaneous presence of HPV in the cervix and anal canal was found in 53.8 % of the cases. Regarding expression of E6 RNA, positivity for HPV-16 in the anal canal was found in 21.2 % of the cases, positivity for HPV-16 in the cervix was found in 75.0 %, and positivity for HPV-18 in the cervix was found in 1.9 %. E6 expression in both the cervix and anal canal was found in 19.2 % of the cases. In the controls, 1 % tested positive for HPV-16 and 0 % for HPV-18. Anal samples from the controls showed a hrHPV frequency of 4.9 % (only HPV16). The presence of hrHPV in the anal canal of women with cervical cancer was detected at a high frequency. We also detected E6 RNA expression in the anal canal of women with cervical cancer, suggesting that these women are at risk for anal hrHPV infection.
Resumo:
The paper reflects the work of COST Action TU1403 Workgroup 3/Task group 1. The aim is to identify research needs from a review of the state of the art of three aspects related to adaptive façade systems: (1) dynamic performance requirements; (2) façade design under stochastic boundary conditions and (3) experiences with adaptive façade systems and market needs.
Resumo:
Esta propuesta de investigación se enmarca en los encuentros y discusiones que se están realizando en la Escuela de Artes de la Facultad de Filosofía y Humanidades (CEPIA, CIFFyH y SeCyT, de la U.N.C), en relación a las problemáticas de la investigación en Artes. Los encuentros llevados a cabo en diversas ocasiones y a lo largo de 2009, demuestran la necesidad de establecer un campo particular de la investigación y su relación con la práctica artística. Este proyecto nace de estas inquietudes y establece ciertos ejes de trabajo que permiten poner en práctica ciertos esbozos imaginados. En este sentido, nuestra propuesta se centra en definir la misma construcción escénica como objeto de estudio, delimitando sobre éste la problemática de lo real en el trabajo de la ficción, proponiendo además un equipo que permita investigar en su propio desarrollo creativo las diversas variables que entran en juego. De este modo, se trabajará en una propuesta de laboratorio escénico donde los planteos de orden teórico atraviesen la práctica y, a su vez, la observación de ésta permita una reelaboración y profundización del pensamiento contemporáneo sobre la problemática ejecución/representación, desde los diversos órdenes en que ésta interviene. La idea de representación teatral que planteaba Aristóteles señala que las acciones devienen necesariamente en la definición del carácter de los personajes. Este concepto es clave en el desarrollo del teatro occidental y por ende en las diferentes concepciones de actor. La definición de acción dada por Aristóteles es problemática para parte del teatro contemporáneo ya que supone que toda acción es mimética. También da por supuesto que en el teatro se conforman personajes, y que la unidad narrativa está dada por una programática, que es definida por la acción.La presente investigación se propone indagar en la relación entre la ejecución de la acción y su representación en el desarrollo de un laboratorio teatral. Esto implica que necesariamente es aplicada al trabajo escénico. Nuestra hipótesis de partida es que la relación conflictiva entre acción, ejecución de la misma y representación, se produce a partir de la operación material sobre lo real . Estas intersecciones podrían ser pensadas como una teoría del montaje donde la corporalidad es el principio necesario e irreductible de la construcción. La intersección de lo real es una problemática que permite ahondar sobre los procedimientos por los cuales se construye la escena. La idea de un teatro material, obliga a pensar con qué procedimientos se construye ficción. Un teatro que intenta recalar en lo “real” como modo de señalar la cosa misma, se propone, desde la perspectiva de la realización, indagar en los mecanismos de su construcción (procedimientos), por lo cual supone que la actividad teatral puede dar cuenta de los procesos por los cuales se realiza. La realización de una acción, puede remitir a sí misma y genera una relación “extraña” y ambigua con el mundo de referencia. La acción en sí misma, pone en cuestión la idea de modelo y da cuenta de una crisis en la representación. La teoría ha intentado dividir y sistematizar de manera binaria la manifestación teatral: Teatro de Representación/ Teatro Performático, para distinguir un teatro vinculado a la creación de personajes o para relacionarlo a un teatro de ejecución. Sin embargo, pensamos que es posible encontrar en la producción escénica, intersecciones de lo real que median el mundo de la representación y el de la performance para la construcción de ficción. Nuestra hipótesis de base es que si intervenimos el plano de la ejecución en el actor, la representación varía sustancialmente sus mecanismos de producción de sentido. Este primer planteo no es conflictivo hasta que se pone de manifiesto lo real. This research’s proposal is framed into the meetings and discussions that have been taking place in the School of Arts of the Faculty of Philosophy and Humanities (CEPIA, CIFFyH y SeCyT, of the National University of Cordoba), concerning the difficulties of research in Arts. The meetings carried out along 2009, demonstrate the need to establish a particular field of research and its relation to the practice of arts. This project is born from these concerns and it establishes central axis for the work, that enables us to put on practice some sketches imagined. In this regard, our proposal focuses on defining the construction of the scene as object of study, in itself, delimiting the issue of “the real” in the work of fiction. Proposing, furthermore, a team for researching the many variables that comes into play, in their own creative development. Consequently, the work will be developed in the method of a scenic laboratory, where the theoretical proposals cross over the practice and, in turn, these observations allow a reworking and deepen of contemporary thinking about the problematic of performance / representation, from the diverse orders in which it intervene. The idea of theatrical performance proposed by Aristotle, indicate that actions necessarily turn into the definition of the nature of the characters. This concept is key to the development of Western theaterand consequently on the different conceptions of actor. The definition of action given by Aristotle is problematic for a part of the contemporary theater, because it assumes that every action is mimetic. Also presumes that in the theatre the characters are formed, and narrative unit is given by a programmatic, which is defined by the action. This research proposes to explore the relationship between implementation of the action and its representation in the development of a theatrical laboratory. This implies that it is applied necessarily to the scenic practice. Our preliminary hypothesis is that the co.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
The author has studied the influence of acetylcholine solutions directly applied on the motor cortex of dogs, cats monkeys and rabbits. For this purpose small squares of filter paper were soaked in the acetylcholine solution and soon afterwards laid on the motor cortex. Solutions varying from 0,2 to 10 per cent have been experimented. It has been shown that local application of the solutions on the motor points, previously localized by induction coil, produced motor reactions. It has been found, in the dogs that 10 per cent acetylcholine solutions cause localized muscular twitchings (clonus) in almost all the animals experimented. Generalised epileptiform convulsions were obtained in44,4% of the dogs. Convulsions were also obtained by employing 1 per cent solution of acetylcholine. Definite response has been obtained with 0,2 per cent solution. Failure of motor action, pointed out by other authors, has been related to the use of anesthetics. Convulsions were easily produced by rapid light mechanical stimulations of the skin covering the muscles in conection with the excited motor point, and the application on the motor point of acetylcholine. The results on monkeys can be summarized as follows. Two species of monkeys were experimented: Cebus capucinus and Macaca mulata. In the monkeys C. capucinus generalised convulsive reactions were induced with actylcholine solutions in a concentration as low as 0,5 per cent. Motor reaction or convulsive seizeres were obtained in seven of the eight monkeys used. Three monkeys M. mulata were stimulated with 10 per cent acetylcholine solution but only localized muscular contraction hae been observed. Similar results has been obtained on the motor cortex of cats and rabbits. One of the three cats employed has shown epileptiform convulsions and the remaining only localized muscular contractions. In the rabbits muscular twitchings have been also induced. The sensitizing power of eserine on the action of acetylcholine has been also searched. The results indicate that a previous application of eserine solution on the motor center, potentiates the action of acetylcholine. The intensity of the muscular twitchings is greater than the obtained before the application of the eserine solution. Generalised epileptiform convulsions sometimes appeared following the use of lower concentrations of acetylcholine than those previously employed. Experiments have been carried out by injecting eserine and prostigmine by parenteral route. A dosis dufficient for induce small muscular tremors did not enhance obviously the motor effects produced by the application of the acetylcholine solutions on the motor cortex. From seven dogs experimented, all previously tested for convulsive seiruzes by application of 1 and 10 per cent acetylcholine solution with negative results, only one has shown epileptiform convulsions after the injection of prostigmine. Morphine has also been tested as facilitating substance for convulsions induced by acetylcholine. Six from the nine dogs submitted to the experiments, developed epileptiform seizures after injection of morphine and stimulation of the motor cortex with acetylcholine. (Table IV). In another series of experiments atropine and nicotine have been studied as for to their action on the motor effects of acetylcholine. Nicotine has a strong convulsant action, even when employed in very high concentration. Since a depressant effect has not appeared even by the applications of high concentrations of nicotine in the motor corteõ of dogs, unlike the classical observations for the autonomus nervous system, it was not possible to verify the action of acetylcholine on a motor center paralised by nicotine. It is important to not that the motor phenomena observed after the first aplication of acetylcholine, can desappear by the renewal of the pieces of filter paper soaked in the acetylcholine solution. Atropine, either applied on the motor point in low concentration, or injected in sufficient amount for inhibiting the muscarinic effects of acetylcholine on the autonomous nervous system, did not prevent the motor reactions of acetylcholine on the cerebral cortex.
Resumo:
In Part I, we formulate and examine some systems that have arisen in the study of the constructible hierarchy; we find numerous transitive models for them, among which are supertransitive models containing all ordinals that show that Devlin's system BS lies strictly between Gandy's systems PZ and BST'; and we use our models to show that BS fails to handle even the simplest rudimentary functions, and is thus inadequate for the use intended for it in Devlin's treatise. In Part II we propose and study an enhancement of the underlying logic of these systems, build further models to show where the previous hierarchy of systems is preserved by our enhancement; and consider three systems that might serve for Devlin's purposes: one the enhancement of a version of BS, one a formulation of Gandy-Jensen set theory, and the third a subsystem common to those two. In Part III we give new proofs of results of Boffa by constructing three models in which, respectively, TCo, AxPair and AxSing fail; we give some sufficient conditions for a set not to belong to the rudimentary closure of another set, and thus answer a question of McAloon; and we comment on Gandy's numerals and correct and sharpen other of his observations.
Resumo:
Résumé Le transfert du phosphate des racines vers les feuilles s'effectue par la voie du xylème. Il a été précédemment démontré que la protéine AtPHO1 était indispensable au transfert du phosphate dans les vaisseaux du xylème des racines chez la plante modèle Arabidopsis thaliana. Le séquençage et l'annotation du génome d'Arabidopsis ont permis d'identifier dix séquences présentant un niveau de similarité significatif avec le gène AtPHO1 et constituant une nouvelle famille de gène appelé la famille de AtPHO1. Basée sur une étude moléculaire et génétique, cette thèse apporte des éléments de réponse pour déterminer le rôle des membres de ia famille de AtPHO1 chez Arabidopsis, inconnue à ce jour. Dans un premier temps, une analyse bioinformatique des séquences protéiques des membres de la famille de AtPHO1 a révélé la présence dans leur région N-terminale d'un domaine nommé SPX. Ce dernier est conservé parmi de nombreuses protéines impliquées dans l'homéostasie du phosphate chez la levure, renforçant ainsi l'hypothèse que les membres de la famille de AtPHO1 auraient comme AtPHO1 un rôle dans l'équilibre du phosphate dans la plante. En parallèle, la localisation tissulaire de l'expression des gènes AtPHO dans Arabidopsis a été identifiée par l'analyse de plantes transgéniques exprimant le gène rapporteur uidA sous le contrôle des promoteurs respectifs des gènes AtPHO. Un profil d'expression de chaque gène AtPHO au cours du développement de la plante a été obtenu. Une expression prédominante au niveau des tissus vasculaires des racines, des feuilles, des tiges et des fleurs a été observée, suggérant que les gènes AtPHO pourraient avoir des fonctions redondantes au niveau du transfert de phosphate dans le cylindre vasculaire de ces différents organes. Toutefois, plusieurs régions promotrices des gènes AtPHO contrôlent également un profil d'expression GUS non-vasculaire, indiquant un rôle putatif des gènes AtPHO dans l'acquisition ou le recyclage de phosphate dans la plante. Dans un deuxième temps, l'analyse de l'expression des gènes AtPHO durant une carence en phosphate a établi que seule l'expression des gènes AtPHO1, AtPHO1; H1 et AtPHO1; H10 est régulée par cette carence. Une étude approfondie de leur expression en réponse à des traitements affectant l'homéostasie du phosphate dans la plante a ensuite démontré leur régulation par différentes voies de signalisation. Ensuite, une analyse détaillée de la régulation de l'expression du gène AtPHO1; H1O dans des feuilles d'Arabidopsis blessées ou déshydratées a révélé que ce gène constitue le premìer gène marqueur d'une nouvelle voie de signalisation induite par l'OPDA, pas par le JA et dépendante de la protéine COI1. Ces résultats démontrent pour la première fois que l'OPDA et le JA peuvent activer différents gènes via des voies de signalisation dépendantes de COI1. Enfin, cette thèse révèle l'identification d'un nouveau rôle de la protéine AtPHO1 dans la régulation de l'action de l'ABA au cours des processus de fermeture stomatique et de germination des graines chez Arabidopsis. Bien que les fonctions exactes des protéines AtPHO restent à être déterminées, ce travail de thèse suggère leur implication dans la propagation de différents signaux dans la plante via la modulation du potentiel membranaire et/ou l'affectation de la composition en ions des cellules comme le font de nombreux transporteurs ou régulateur du transport d'ions. Summary Phosphate is transferred from the roots to the shoot via the xylem. The requirement for AtPHO1 protein to transfer phosphate to the xylem vessels of the root has been previously demonstrated in Arabidopsis thaliana. The sequencing and the annotation of the Arabidopsis genome had allowed the identification of ten sequences that show a significant level of similarity with the AtPHO1 gene. These 10 genes, of unknown functions, constitute a new gene family called the AtPHO1 gene family. Based on a molecular and genetics study, this thesis reveals some information needed to understand the role of the AtPHO1 family members in the plant Arabidopsis. First, a bioinformatics study revealed that the AtPHO sequences contained, in the N-terminal hydrophilic region, a motif called SPX and conserved among multiple proteins involved in phosphate homeostasis in yeast. This finding reinforces the hypothesis that all AtPHO1 family members have, as AtPHO1, a role in phosphate homeostasis. In parallel, we identified the pattern of expression of AtPHO genes in Arabidopsis via analysis of transgenic plants expressing the uidA reporter gene under the control of respective AtPHO promoter regions. The results exhibit a predominant expression of AtPHO genes in vascular tissues of all organs of the plant, implying that these AtPHO genes could have redundant functions in the transfer of phosphate to the vascular cylinder of various organs. The GUS expression pattern for several AtPHO promoter regions was also detected in non-vascular tissue indicating a broad role of AtPHO genes in the acquisition or in the recycling of phosphate in the plant. In a second step, the analysis of the expression of AtPHO genes during phosphate starvation established that only the expression of the AtPHO1, AtPHO1; H1 and AtPHO1; H10 genes were regulated by Pi starvation. Interestingly, different signalling pathways appeared to regulate these three genes during various treatments affecting Pi homeostasis in the plant. The third chapter presents a detailed analysis of the signalling pathways regulating the expression of the AtPHO1; H10 gene in Arabidopsis leaves during wound and dehydrated stresses. Surprisingly, the expression of AtPHO1; H10 was found to be regulated by OPDA (the precursor of JA) but not by JA itself and via the COI1 protein (the central regulator of the JA signalling pathway). These results demonstrated for the first time that OPDA and JA could activate distinct genes via COI1-dependent pathways. Finally, this thesis presents the identification of a novel role of the AtPHO1 protein in the regulation of ABA action in Arabidopsis guard cells and during seed germination. Although the exact role and function of AtPHO1 still need to be determined, these last findings suggest that AtPHO1 and by extension other AtPHO proteins could mediate the propagation of various signals in the plant by modulating the membrane potential and/or by affecting cellular ion composition, as it is the case for many ion transporters or regulators of ion transport.
Resumo:
We extend the model of collective action in which groups compete for a budged by endogenizing the group platform, namely the specific mixture of public/private good and the distribution of the private good to group members which can be uniform or performance-based. While the group-optimal platform contains a degree of publicness that increases in group size and divides the private benefits uniformly, a success-maximizing leader uses incentives and distorts the platform towards more private benefits - a distortion that increases with group size. In both settings we obtain the anti-Olson type result that win probability increases with group size.
Resumo:
In this paper we analyse a simple two-person sequential-move contest game with heterogeneous players. Assuming that the heterogeneity could be the consequence of past discrimination, we study the effects of implementation of affirmative action policy, which tackles this heterogeneity by compensating discriminated players, and compare them with the situation in which the heterogeneity is ignored and the contestants are treated equally. In our analysis we consider different orders of moves. We show that the order of moves of contestants is a very important factor in determination of the effects of the implementation of the affirmative action policy. We also prove that in such cases a significant role is played by the level of the heterogeneity of individuals. In particular, in contrast to the present-in-the-literature predictions, we demonstrate that as a consequence of the interplay of these two factors, the response to the implementation of the affirmative action policy option may be the decrease in the total equilibrium effort level of the contestants in comparison to the unbiased contest game.
Resumo:
The sequence of pitches which form a musical melody can be transposed or inverted. Since the 1970s, music theorists have modeled musical transposition and inversion in terms of an action of the dihedral group of order 24. More recently music theorists have found an intriguing second way that the dihedral group of order 24 acts on the set of major and minor triads. We illustrate both geometrically and algebraically how these two actions are dual. Both actions and their duality have been used to analyze works of music as diverse as Hindemith and the Beatles.
Resumo:
Workers performing preparation and administration of radiopharmaceuticals in NM departments are likely to receive high local skin doses to the hands which may even surpass the dose limit of 500 mSv whenever radiation protection standards are insufficient. A large measurement campaign was organised within the framework of the ORAMED project to determine the dose distribution across the hands received during preparation and administration of 18F- and 99mTc-labelled radiopharmaceuticals. The final data, collected over almost 3 years, include 641 measurements from 96 workers in 30 NM departments from 6 European countries. Results have provided levels of reference doses for the considered standard NM diagnostic procedures (mean maximum normalised skin dose of 230 μSv/GBq, 430 μSv/GBq, 930 μSv/GBq and 1200 μSv/GBq for the administration of 99mTc, preparation of 99mTc, administration of 18F and preparation of 18F, respectively). Finger dose was analysed as a function of the potential parameters of influence showing that shielding is the most efficient means of radiation protection to reduce skin dose. An appropriate method for routine monitoring of the extremities is also proposed: the base of the index finger of the non-dominant hand is a suitable position to place the ring dosemeter, with its sensitive part oriented towards the palm side; its reading may be multiplied by a factor of 6 to estimate the maximum local skin dose. Finally, results were compared to earlier published data, which correspond mostly to individual works with a reduced number of workers and measurements.