983 resultados para inductively coupled plasma
Resumo:
Ontogenetic variation in 4 trace element ((88)Sr, (137)Ba, (24)Mg, (23)Na) concentrations and their ratios to Ca were measured in statoliths of the jumbo flying squid Dosidicus gigas off the Exclusive Economic Zone of Chilean and Peruvian waters using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The element compositions of statoliths showed no significant differences between females and males. All of the elements in different growth zones showed significant variations, except for Mg. Sr:Ca and Mg:Ca were good indicators for distinguishing squid from autumn and winter spawning seasons. Sr:Ca and Ba:Ca distribution patterns in statoliths confirmed that paralarvae and juvenile squid inhabit surface waters, while subadult squid migrate into deeper waters. An increasing Sr: Ca ratio of subadult squid could be explained by declining temperature gradients from northern to southern sampling locations, although no significant Sr: Ca differences were observed (p > 0.05). Mg:Ca ratios decreased progressively from the nucleus to the peripheral zone, which might be correlated with statolith growth rates. Na:Ca ratios slightly declined from paralarvae to the subadult phase. Quantitative relationships between statolith trace elements and environmental conditions under different growth stages are needed to improve our understanding of life history of D. gigas.
Resumo:
A comparison of 50 basalts recovered at Sites 706, 707, 713, and 715 along the Reunion hotspot trace during Ocean Drilling Program Leg 115 in the Indian Ocean shows that seafloor alteration had little effect on noble metal concentrations (Au, Pd, Pt, Rh, Ru, and Ir), determined by inductively coupled plasma-mass spectrometry (ICP-MS), which generally tend to decrease with magma evolution. Their compatible-element behavior may be related to the precipitation of Ir-Os-based alloys, chromite, sulfides, and/or olivine and clinopyroxene in some combination. The simplest explanation indicates silicate control of concentrations during differentiation. Basalts from the different sites show varying degrees of alkalinity. Noble metal abundances tend to increase with decreasing basalt alkalinity (i.e., with increasing percentages of mantle melting), indicating that the metals behave as compatible elements during mantle melting. The retention of low-melting-point Au, Pd, and Rh in mantle sulfides, which mostly dissolve before significant proportions of Ir-Os-based alloys melt, explains increasing Pd/Ir ratios with decreasing alkalinity (increasing melting percentages) in oceanic basalts. High noble metal concentrations in Indian Ocean basalts (weighted averages of Au, Pd, Rh, Pt, Ru, and Ir in Leg 115 basalts are 3.2, 8.1, 0.31, 7.3, 0.22, and 0.11 ppb, respectively), compared with basalts from some other ocean basins, may reflect fundamental primary variations in upper- mantle noble metal abundances
Resumo:
The Central gold belt of peninsular Malaysia comprises a number of gold deposits located in the east of the N-S striking Bentong-Raub Suture Zone. The Tersang gold deposit is one of the gold deposits in the gold belt and hosted in sandstone, rhyolite and breccia units. The deposit has an inferred resource of 528,000 ounces of gold. The geochronology of the Tersang deposit has been newly constrained by LA ICP-MS U-Pb zircon dating. The maximum depositional age of the host sedimentary rocks ranges from Early Carboniferous to Early Permian (261.5 ± 4.9 Ma to 333.5 ± 2.5 Ma) for the host sandstone and Late Triassic for the rhyolite intrusion (218.8 ± 1.7 Ma). Textural characteristics of pyrite have revealed five types including (1) Euhedral to subhedral pyrite with internal fracturing and porous cores located in the sandstone layers (pyrite 1); (2) Anhedral pyrite overgrowths on pyrite 1 and disseminated in stage 1 vein (pyrite 2); (3) Fracture-filled or vein pyrite located in stages 1 and 2 vein (pyrite 3); (4) Euhedral pyrite with internal fractures also located in stage 2 vein (pyrite 4); and (5) Subhedral clean pyrite located in the rhyolite intrusion (pyrite 5). Based on pyrite mapping and spot analyses, two main stages of gold enrichment are documented from the Tersang gold deposit. Gold in sandstone-hosted pyrite 1 (mean 4.3 ppm) shows best correlation with Bi and Pb (as evidenced on pyrite maps). In addition, gold in pyrite 3 (mean 8 ppm) located in stage 2 vein shows a good correlation with As, Ag, Sb, Cu, Tl, and Pb. In terms of gold exploration, we suggest that elements such as As, Ag, Sb, Cu, Tl, Bi, and Pb associated with Au may serve as vectoring tools in gold exploration. Our new geological, structural, geochemical and isotopic data together with mineral paragenesis, pyrite chemistry and ore fluid characteristics indicate that the Tersang gold deposit is comparable to a sediment-hosted gold deposit. Our new genetic model suggests deposition of the Permo-Carboniferous sediments followed by intrusion of rhyolitic magma in the Late Triassic. At a later stage, gold mineralisation overprinted the rhyolite intrusion and the sandstone.
Resumo:
We present monthly resolved records of strontium/calcium (Sr/Ca) and oxygen isotope (d18O) ratios from well-preserved fossil corals drilled during the Integrated Ocean Drilling Program (IODP) Expedition 310 'Tahiti Sea Level' and reconstruct sea surface conditions in the central tropical South Pacific Ocean during two time windows of the last deglaciation. The two Tahiti corals examined here are uranium/thorium (U/Th)-dated at 12.4 and 14.2 ka, which correspond to the Younger Dryas (YD) cold reversal and the Bølling-Allerød (B-A) warming of the Northern Hemisphere, respectively. The coral Sr/Ca records indicate that annual average sea surface temperature (SST) was 2.6-3.1 °C lower at 12.4 ka and 1.0-1.6 °C lower at 14.2 ka relative to the present, with no significant changes in the amplitude of the seasonal SST cycle. These cooler conditions were accompanied by seawater d18O (d18Osw) values higher by ~0.8 per mill and ~0.6 per mill relative to the present at 12.4 and 14.2 ka, respectively, implying more saline conditions in the surface waters. Along with previously published coral Sr/Ca records from the island [Cohen and Hart (2004), Deglacial sea surface temperatures of the western tropical Pacific: A new look at old coral. Paleoceanography 19, PA4031, doi:10.1029/2004PA001084], our new Tahiti coral records suggest that a shift toward lower SST by ~1.5 °C occurred from 13.1 to 12.4 ka, which was probably associated with a shift toward higher d18Osw by ~0.2 per mill. Along with a previously published coral Sr/Ca record from Vanuatu [Corrège et al. (2004), Interdecadal variation in the extent of South Pacific tropical waters during the Younger Dyras event. Nature 428, 927-929], the Tahiti coral records provide new evidence for a pronounced cooling of the western to central tropical South Pacific during the Northern Hemisphere YD event.
Resumo:
We present uranium-thoriumchronology for a 102 mcore through a Pleistocene reef at Tahiti (French Polynesia) sampled during IODP Expedition 310 "Tahiti Sea Level". We employ total and partial dissolution procedures on the older coral samples to investigate the diagenetic overprint of the uranium-thoriumsystem. Although alteration of the U-Th system cannot be robustly corrected, diagenetic trends in the U-Th data, combined with sea level and subsidence constraints for the growth of the corals enables the age of critical samples to be constrained to marine isotope stage 9. We use the ages of the corals, together with d18O based sea-level histories, to provide maximum constraints on possible paleo water-depths. These depth constraints are then compared to independent depth estimates based on algal and foraminiferal assemblages, microbioerosion patterns, and sedimentary facies, confirming the accuracy of these paleo water-depth estimates. We also use the fact that corals could not have grown above sea level to place amaximumconstraint on the subsidence rate of Tahiti to be 0.39 m ka**-1,with the most likely rate being close to the existing minimum estimate of 0.25m ka**-1.
Resumo:
The Greenland ice sheet is accepted as a key factor controlling the Quaternary glacial scenario. However, the origin and mechanisms of major Arctic glaciation starting at 3.15 Ma and culminating at 2.74 Ma are still controversial. For this phase of intense cooling Ravelo et al. proposed a complex gradual forcing mechanism. In contrast, our new submillennial-scale paleoceanographic records from the Pliocene North Atlantic suggest a far more precise timing and forcing for the initiation of northern hemisphere glaciation (NHG), since it was linked to a 2-3 °C surface water warming during warm stages from 2.95 to 2.82 Ma. These records support previous models, claiming that the final closure of the Panama Isthmus (3.0- ~2.5 Ma induced an increased poleward salt and heat transport. Associated strengthening of North Atlantic Thermohaline Circulation and in turn, an intensified moisture supply to northern high latitudes resulted in the build-up of NHG, finally culminating in the great, irreversible climate crash at marine isotope stage G6 (2.74 Ma). In summary, there was a two-step threshold mechanism that marked the onset of NHG with glacial-to-interglacial cycles quasi-persistent until today.
Resumo:
We examined small-scale shear zones in drillcore samples of abyssal peridotites from the Mid-Atlantic Ridge. These shear zones are associated with veins consisting of chlorite + actinolite/tremolite assemblages, with accessory phases zircon and apatite, and they are interpreted as altered plagiogranite melt impregnations, which originate from hydrous partial melting of gabbroic intrusion in an oceanic detachment fault. Ti-in-zircon thermometry yields temperatures around 820°C for the crystallization of the evolved melt. Reaction path modeling indicates that the alteration assemblage includes serpentine of the adjacent altered peridotites. Based on the model results, we propose that formation of chlorite occurred at higher temperatures than serpentinization, thus leading to strain localization around former plagiogranites during alteration. The detachment fault represents a major pathway for fluids through the oceanic crust, as evidenced by extremely low d18O of altered plagiogranite veins (+3.0-4.2 per mil) and adjacent serpentinites (+ 2.6-3.7 per mil). The uniform oxygen isotope data indicate that fluid flow in the detachment fault system affected veins and adjacent host serpentinites likewise.