994 resultados para grants
Resumo:
Objectives: To quantify randomness and cost when choosing health and medical research projects for funding. Design: Analysis of retrospective data from grant review panels. Setting: The National Health & Medical Research Council of Australia. Participants/Data: All panel members’ scores for grant proposals submitted in 2009. Main outcome measure: The proportion of grant proposals that were always, sometimes and never funded after accounting for random variability arising from variation in panel members’ scores; the cost-effectiveness of different size assessment panels. Results: 59% of 620 funded grants were sometimes not funded when random variability was accounted for. Only 9% of grant proposals were always funded, 61% were never funded and 29% were sometimes funded. The extra cost per grant effectively funded from the most effective system was $18,541. Conclusions: Allocating funding for scientific research in health and medicine is costly and somewhat random. There are many useful research questions to be addressed that could improve current processes.
Resumo:
This paper examines the rapid and ad hoc development and interactions of participative citizen communities during acute events, using the examples of the 2011 floods in Queensland, Australia, and the global controversy surrounding Wikileaks and its spokesman, Julian Assange. The self-organising community responses to such events which can be observed in these cases bypass or leapfrog, at least temporarily, most organisational or administrative hurdles which may otherwise frustrate the establishment of online communities; they fast-track the processes of community development and structuration. By understanding them as a form of rapid prototyping, e-democracy initiatives can draw important lessons from observing the community activities around such acute events.
Resumo:
Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.
Resumo:
Gait energy images (GEIs) and its variants form the basis of many recent appearance-based gait recognition systems. The GEI combines good recognition performance with a simple implementation, though it suffers problems inherent to appearance-based approaches, such as being highly view dependent. In this paper, we extend the concept of the GEI to 3D, to create what we call the gait energy volume, or GEV. A basic GEV implementation is tested on the CMU MoBo database, showing improvements over both the GEI baseline and a fused multi-view GEI approach. We also demonstrate the efficacy of this approach on partial volume reconstructions created from frontal depth images, which can be more practically acquired, for example, in biometric portals implemented with stereo cameras, or other depth acquisition systems. Experiments on frontal depth images are evaluated on an in-house developed database captured using the Microsoft Kinect, and demonstrate the validity of the proposed approach.
Resumo:
Compressive Sensing (CS) is a popular signal processing technique, that can exactly reconstruct a signal given a small number of random projections of the original signal, provided that the signal is sufficiently sparse. We demonstrate the applicability of CS in the field of gait recognition as a very effective dimensionality reduction technique, using the gait energy image (GEI) as the feature extraction process. We compare the CS based approach to the principal component analysis (PCA) and show that the proposed method outperforms this baseline, particularly under situations where there are appearance changes in the subject. Applying CS to the gait features also avoids the need to train the models, by using a generalised random projection.
Resumo:
Open-source software systems have become a viable alternative to proprietary systems. We collected data on the usage of an open-source workflow management system developed by a university research group, and examined this data with a focus on how three different user cohorts – students, academics and industry professionals – develop behavioral intentions to use the system. Building upon a framework of motivational components, we examined the group differences in extrinsic versus intrinsic motivations on continued usage intentions. Our study provides a detailed understanding of the use of open-source workflow management systems in different user communities. Moreover, it discusses implications for the provision of workflow management systems, the user-specific management of open-source systems and the development of services in the wider user community.
Resumo:
This study of photocatalytic oxidation of phenol over titanium dioxide films presents a method for the evaluation of true reaction kinetics. A flat plate reactor was designed for the specific purpose of investigating the influence of various reaction parameters, specifically photocatalytic film thickness, solution flow rate (1–8 l min−1), phenol concentration (20, 40 and 80 ppm), and irradiation intensity (70.6, 57.9, 37.1and 20.4 W m−2), in order to further understand their impact on the reaction kinetics. Special attention was given to the mass transfer phenomena and the influence of film thickness. The kinetics of phenol degradation were investigated with different irradiation levels and initial pollutant concentration. Photocatalytic degradation experiments were performed to evaluate the influence of mass transfer on the reaction and, in addition, the benzoic acid method was applied for the evaluation of mass transfer coefficient. For this study the reactor was modelled as a batch-recycle reactor. A system of equations that accounts for irradiation, mass transfer and reaction rate was developed to describe the photocatalytic process, to fit the experimental data and to obtain kinetic parameters. The rate of phenol photocatalytic oxidation was described by a Langmuir–Hinshelwood type law that included competitive adsorption and degradation of phenol and its by-products. The by-products were modelled through their additive effect on the solution total organic carbon.
Resumo:
Models of word meaning, built from a corpus of text, have demonstrated success in emulating human performance on a number of cognitive tasks. Many of these models use geometric representations of words to store semantic associations between words. Often word order information is not captured in these models. The lack of structural information used by these models has been raised as a weakness when performing cognitive tasks. This paper presents an efficient tensor based approach to modelling word meaning that builds on recent attempts to encode word order information, while providing flexible methods for extracting task specific semantic information.
Resumo:
In response to the need to leverage private finance and the lack of competition in some parts of the Australian public sector major infrastructure market, especially in very large economic infrastructure procured using Pubic Private Partnerships, the Australian Federal government has demonstrated its desire to attract new sources of in-bound foreign direct investment (FDI) into the Australian construction market. This paper aims to report on progress towards an investigation into the determinants of multinational contractors’ willingness to bid for Australian public sector major infrastructure projects and which is designed to give an improved understanding of matters surrounding FDI into the Australian construction sector. This research deploys Dunning’s eclectic theory for the first time in terms of in-bound FDI by multinational contractors and as head contractors bidding for Australian major infrastructure public sector projects. Elsewhere, the authors have developed Dunning’s principal hypothesis associated with his eclectic framework in order to suit the context of this research and to address a weakness arising in Dunning’s principal hypothesis that is based on a nominal approach to the factors in the eclectic framework and which fail to speak to the relative explanatory power of these factors. In this paper, an approach to reviewing and analysing secondary data, as part of the first stage investigation in this research, is developed and some illustrations given, vis-à-vis the selected sector (roads, bridges and tunnels) in Australia (as the host location) and using one of the selected home countries (Spain). In conclusion, some tentative thoughts are offered in anticipation of the completion of the first stage investigation - in terms of the extent to which this first stage based on secondary data only might suggest the relative importance of the factors in the eclectic framework. It is noted that more robust conclusions are expected following the future planned stages of the research and these stages including primary data are briefly outlined. Finally, and beyond theoretical contributions expected from the overall approach taken to developing and testing Dunning’s framework, other expected contributions concerning research method and practical implications are mentioned.
Resumo:
We consider a robust filtering problem for uncertain discrete-time, homogeneous, first-order, finite-state hidden Markov models (HMMs). The class of uncertain HMMs considered is described by a conditional relative entropy constraint on measures perturbed from a nominal regular conditional probability distribution given the previous posterior state distribution and the latest measurement. Under this class of perturbations, a robust infinite horizon filtering problem is first formulated as a constrained optimization problem before being transformed via variational results into an unconstrained optimization problem; the latter can be elegantly solved using a risk-sensitive information-state based filtering.
Resumo:
As the use of Twitter has become more commonplace throughout many nations, its role in political discussion has also increased. This has been evident in contexts ranging from general political discussion through local, state, and national elections (such as in the 2010 Australian elections) to protests and other activist mobilisation (for example in the current uprisings in Tunisia, Egypt, and Yemen, as well as in the controversy around Wikileaks). Research into the use of Twitter in such political contexts has also developed rapidly, aided by substantial advancements in quantitative and qualitative methodologies for capturing, processing, analysing, and visualising Twitter updates by large groups of users. Recent work has especially highlighted the role of the Twitter hashtag – a short keyword, prefixed with the hash symbol ‘#’ – as a means of coordinating a distributed discussion between more or less large groups of users, who do not need to be connected through existing ‘follower’ networks. Twitter hashtags – such as ‘#ausvotes’ for the 2010 Australian elections, ‘#londonriots’ for the coordination of information and political debates around the recent unrest in London, or ‘#wikileaks’ for the controversy around Wikileaks thus aid the formation of ad hoc publics around specific themes and topics. They emerge from within the Twitter community – sometimes as a result of pre-planning or quickly reached consensus, sometimes through protracted debate about what the appropriate hashtag for an event or topic should be (which may also lead to the formation of competing publics using different hashtags). Drawing on innovative methodologies for the study of Twitter content, this paper examines the use of hashtags in political debate in the context of a number of major case studies.
Resumo:
How do humans respond to their social context? This question is becoming increasingly urgent in a society where democracy requires that the citizens of a country help to decide upon its policy directions, and yet those citizens frequently have very little knowledge of the complex issues that these policies seek to address. Frequently, we find that humans make their decisions more with reference to their social setting, than to the arguments of scientists, academics, and policy makers. It is broadly anticipated that the agent based modelling (ABM) of human behaviour will make it possible to treat such social effects, but we take the position here that a more sophisticated treatment of context will be required in many such models. While notions such as historical context (where the past history of an agent might affect its later actions) and situational context (where the agent will choose a different action in a different situation) abound in ABM scenarios, we will discuss a case of a potentially changing context, where social effects can have a strong influence upon the perceptions of a group of subjects. In particular, we shall discuss a recently reported case where a biased worm in an election debate led to significant distortions in the reports given by participants as to who won the debate (Davis et al 2011). Thus, participants in a different social context drew different conclusions about the perceived winner of the same debate, with associated significant differences among the two groups as to who they would vote for in the coming election. We extend this example to the problem of modelling the likely electoral responses of agents in the context of the climate change debate, and discuss the notion of interference between related questions that might be asked of an agent in a social simulation that was intended to simulate their likely responses. A modelling technology which could account for such strong social contextual effects would benefit regulatory bodies which need to navigate between multiple interests and concerns, and we shall present one viable avenue for constructing such a technology. A geometric approach will be presented, where the internal state of an agent is represented in a vector space, and their social context is naturally modelled as a set of basis states that are chosen with reference to the problem space.
Resumo:
This paper presents a preliminary flight test based detection range versus false alarm performance characterisation of a morphological-hidden Markov model filtering approach to vision-based airborne dim-target collision detection. On the basis of compelling in-flight collision scenario data, we calculate system operating characteristic (SOC) curves that concisely illustrate the detection range versus false alarm rate performance design trade-offs. These preliminary SOC curves provide a more complete dim-target detection performance description than previous studies (due to the experimental difficulties involved, previous studies have been limited to very short flight data sample sets and hence have not been able to quantify false alarm behaviour). The preliminary investigation here is based on data collected from 4 controlled collision encounters and supporting non-target flight data. This study suggests head-on detection ranges of approximately 2.22 km under blue sky background conditions (1.26 km in cluttered background conditions), whilst experiencing false alarms at a rate less than 1.7 false alarms/hour (ie. less than once every 36 minutes). Further data collection is currently in progress.
Resumo:
Emergency Health Services (EHS), encompassing hospital-based Emergency Departments (ED) and pre-hospital ambulance services, are a significant and high profile component of Australia’s health care system and congestion of these, evidenced by physical overcrowding and prolonged waiting times, is causing considerable community and professional concern. This concern relates not only to Australia’s capacity to manage daily health emergencies but also the ability to respond to major incidents and disasters. EHS congestion is a result of the combined effects of increased demand for emergency care, increased complexity of acute health care, and blocked access to ongoing care (e.g. inpatient beds). Despite this conceptual understanding there is a lack of robust evidence to explain the factors driving increased demand, or how demand contributes to congestion, and therefore public policy responses have relied upon limited or unsound information. The Emergency Health Services Queensland (EHSQ) research program proposes to determine the factors influencing the growing demand for emergency health care and to establish options for alternative service provision that may safely meet patient’s needs. The EHSQ study is funded by the Australian Research Council (ARC) through its Linkage Program and is supported financially by the Queensland Ambulance Service (QAS). This monograph is part of a suite of publications based on the research findings that examines the existing literature, and current operational context. Literature was sourced using standard search approaches and a range of databases as well as a selection of articles cited in the reviewed literature. Public sources including the Australian Institute of Health and Welfare (AIHW), the Council of Ambulance Authorities (CAA) Annual Reports, Australian Bureau of Statistics (ABS) and Department of Health and Ageing (DoHA) were examined for trend data across Australia.
Resumo:
Current approaches to the regulation of coal mining activities in Australia have facilitated the extraction of substantial amounts of coal and coal seam gas. The regulation of coal mining activities must now achieve the reduction or mitigation of greenhouse gas emissions in order to address the challenge of climate change and achieve ecologically sustainable development. Several legislative mechanisms currently exist which appear to offer the means to bring about the reduction or mitigation of greenhouse gas emissions from coal mining activities, yet Australia’s emissions from coal mining continue to rise. This article critiques these existing legislative mechanisms and presents recommendations for reform.