959 resultados para geometries
Resumo:
C-2 and LaC2+ were studied using Hartree-Fock(HF), B3LYP (Becke 3-paremeter-Lee-Yang-Parr) density functional method, second-order Moller-Plesset perturbation (MP2) and coupled cluster singles and doubles with non-iterative triples(CCSD(T)) methods. The basis set employed was LANL1DZ. Geometries, vibrational frequencies and other quantities were reported. The results showed that for C-2, all the methods performed well for low spin state (singlet), while only HF and B3LYP remained so for high spin state (triplet). For LaC2+, four isomers were presented and fully optimized. The results suggested that linear isomers with C-infinity v and D-infinity h symmetries were predicted to be saddle points on the energy surface for all the methods, while for isomers with C-2 upsilon and C-s symmetries, they were local minima except C-2 upsilon at B3LYP level, and were isoenergetic at HF, MP2 and CCSD(T) levels, near isoenergetic at B3LYP level. From the differences between HOMO and LUMO, it is also known that the isomers with C-2 upsilon and C-s symmetries offer the largest values and therefore correspond to the most stable structure. For La-C bond lengths, B3LYP gives the shortest, the order is B3LYP
Resumo:
LaC3n+ (n = 0, 1, 2) clusters have been studied using B3LYP (Becke 3-parameter-Lee-Yang-Parr) density functional method. The basis set is Dunning/ Huzinaga valence double zeta for carbon and [2s2p2d] for lanthanum, denoted LANL1DZ. Four isomers are presented for each cluster; two of them are edge binding isomers with C-2 upsilon symmetry, the other two are Linear chains with C-infinity upsilon symmetry. Meanwhile, two spin states for each isomer, that is, singlet and triplet for LaC3+, doublet and quartet for LaC3 and LaC32+, respectively, are also considered. Geometries, vibrational frequencies, infrared intensities, and other quantities are reported and discussed. The results indicate that at some spin states; the C-2 upsilon symmetry isomers are the dominant structures, while for the other spin states, linear isomers are energetically favored. (C) 1998 John Wiley & Sons, Inc.
Resumo:
The energies and geometries of C-9 and LaC9+ clusters were calculated at HF, MP2 and DFT levels. For C-9, all theoretical levels show that the linear chain is the most stable structure. For LaC9+, two isomers were considered. In the first case La has two single bonds (A), while it forms a double bond in the second (B). Our results showed that in HF calculation, B is marginally more stable than A, while for MP2 and DFT, A is favored. Our results also revealed that there is not enough space for C-9 ring to accommodate lanthanum. Our conclusion agrees well with experiment.
Resumo:
A novel triazole derivative 4-(2-hydrobenzylideneamino)-3-(1, 2, 4-triazol-4-ylmethyl)-1H-1, 2, 4-triazole-5 (4H)-thione(1) was synthesized and characterized using elemental analysis, MR, and H-1 NMR, and its crystal structure was determined via X-ray single crystal diffraction analysis. Crystal data: monoclinic, P2 (1)/c, a = 0.83335 (9) nm, b = 1. 49777 (16) run, c = 1. 14724 (12) nm, beta = 107. 990 (2)degrees, D = 1. 470 Mg/m(3), and Z = 4. The geometries and the vibrational frequencies were determined using the density functional theory(DFT) method at the B3LYP/6-31G* level. To demonstrate the accuracy of the reaction route of compound 1, one of the important intermediates was also tested using the same method. The structural parameters of the two compounds calculated using the DFT study are close to those of the crystals, and the harmonic vibrations of the two compounds computed via the DFT method are in good agreement with those in the observed IR spectral data. The thermodynamic properties of the title compound were calculated, and the compound shows a good structural stability at normal temperature. The test results of biological activities show that it has a certain bactericidal ability.
Resumo:
To evaluate the interactions between the atoms of An, Ag and Cu and clean Si(111) surface, two types of silicon clusters Si4H7 and Si16H20 together with their metal complexes were studied by using hybrid (U)B3LYP density functional theory method. Optimized geometries and energies on different adsorption sites indicate that: (1) the binding energies at different adsorption sites are large (ranging from similar to 1.2 to 2.6 eV depend on the metal atoms and adsorption sites), suggesting a strong interaction between metal atom and silicon surface; (2) the most favorable adsorption site is the on top (T) site. Mulliken population analysis indicated that in the system of on top (T) site, a covalent bond is formed between metal atom and dangling bond of surface Si atom. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
With the development of oil and gas field exploration, it becomes harder to search new reserves. So a higher demand of seismic exploration comes up. Now 3C3D seismic exploration technology has been applied in petroleum exploration domains abroad. Comparing with the traditional P-wave exploration, the seismic attributes information which provided by 3C3D seismic exploration will increase quickly. And it can derive various combined parameters. The precision of information about lithology, porosity, fracture, oil-bearing properties, etc which estimated by above parameters was higher than that of pure P-wave exploration. These advantages mentioned above lead to fast development of 3C3D seismic technology recently. Therefore, how to apply the technology in petroleum exploration field in China, how to obtain high quality seismic data, and how to process and interpret real data, become frontier topics in geophysical field nowadays, which have important practical significance in research and application. In this paper, according to the propagation properties of P-wave and converted wave, a study of 3C3D acquisition parameters design method was completed. Main parameters included: trace interval, shot interval, maximum offset, bin size, the interval of receiving lines, the interval of shooting lines, migration aperture, maximum cross line distance, etc. Their determination principle was given. The type of 3C3D seismic exploration geometry was studied. By calculating bin attributes and analyzing parameters of geometry, some useful conclusions were drawn. With the method in this paper, real geometries for continental lithology stratum gas reservoir and fractured gas reservoir were studied and determined. In the static method of multi-wave, the near surface P-wave, S-wave parameter investigation method has been advanced, and this method has been applied for the patent successfully; the near surface P-wave, S-wave parameter investigation method and the converted refraction wave first arrival static techniques have been integrally used to improve the effectiveness of converted wave static. In the aspect of converted wave procession, the rotation of horizontal component data, the calculation of converted wave common conversion bin, the residual static of converted wave, the velocity analysis of the common conversion point (CCP), the Kirchhoff pre-stack time migration of converted wave techniques have been applied for setting up the various 3C3D seismic data processing flows based on different geologic targets, and the high quality P-wave, converted-wave profiles have been acquired in the actual data processing. In the aspect of P-wave and converted-wave comprehensive interpretation, the thoughts and methods of using zero-offset S-wave VSP data to calibrate horizon have been proposed; the method of using P-wave and S-wave amplitude ratio to predict the areas of oil and gas enrichment has been studied; the method of inversion using P-wave combined with S-wave has been studied; the various P-wave, S-wave parameters(velocity ratio, amplitude ratio, poisson ratio) have been used to predict the depth, physical properties, gas-bearing properties of reservoirs; the method of predicting the continental stratum lithology gas reservoir has been built. The above techniques have all been used in various 3D3C seismic exploration projects in China, and the better effects have been gotten. By using these techniques, the 3C3D seismic exploration level has been improved.
Resumo:
In exploration geophysics,velocity analysis and migration methods except reverse time migration are based on ray theory or one-way wave-equation. So multiples are regarded as noise and required to be attenuated. It is very important to attenuate multiples for structure imaging, amplitude preserving migration. So it is an interesting research in theory and application about how to predict and attenuate internal multiples effectively. There are two methods based on wave-equation to predict internal multiples for pre-stack data. One is common focus point method. Another is inverse scattering series method. After comparison of the two methods, we found that there are four problems in common focus point method: 1. dependence of velocity model; 2. only internal multiples related to a layer can be predicted every time; 3. computing procedure is complex; 4. it is difficult to apply it in complex media. In order to overcome these problems, we adopt inverse scattering series method. However, inverse scattering series method also has some problems: 1. computing cost is high; 2. it is difficult to predict internal multiples in the far offset; 3. it is not able to predict internal multiples in complex media. Among those problems, high computing cost is the biggest barrier in field seismic processing. So I present 1D and 1.5D improved algorithms for reducing computing time. In addition, I proposed a new algorithm to solve the problem which exists in subtraction, especially for surface related to multiples. The creative results of my research are following: 1. derived an improved inverse scattering series prediction algorithm for 1D. The algorithm has very high computing efficiency. It is faster than old algorithm about twelve times in theory and faster about eighty times for lower spatial complexity in practice; 2. derived an improved inverse scattering series prediction algorithm for 1.5D. The new algorithm changes the computing domain from pseudo-depth wavenumber domain to TX domain for predicting multiples. The improved algorithm demonstrated that the approach has some merits such as higher computing efficiency, feasibility to many kinds of geometries, lower predictive noise and independence to wavelet; 3. proposed a new subtraction algorithm. The new subtraction algorithm is not used to overcome nonorthogonality, but utilize the nonorthogonality's distribution in TX domain to estimate the true wavelet with filtering method. The method has excellent effectiveness in model testing. Improved 1D and 1.5D inverse scattering series algorithms can predict internal multiples. After filtering and subtracting among seismic traces in a window time, internal multiples can be attenuated in some degree. The proposed 1D and 1.5D algorithms have demonstrated that they are effective to the numerical and field data. In addition, the new subtraction algorithm is effective to the complex theoretic models.
Resumo:
Focal beam analysis is a method for assessment of acquisition geometries that is directly linked to pre-stack migration. About dealing with the complex subsurface structures, the conventional survey design methods which do not take into account the subsurface are no longer valid. Based on the Fourier finite-difference (FFD) large-step wave field extrapolation and Born-Kirchhoff (BK) small-step wavefield interpolation, the thesis presents a rapid resolution analysis of 3D seismic survey design by focal beams in complicated media. Subsequently, The SEG/EAEG salt model is used to illustrate the method. Based on the focal beam resolution definition, each kind of influence factor is discussed. The focal beam analysis usually is carried out in a single frequency, but the actual seismic waves always contain a frequency bandwidth. In this thesis, theoretical relationship between focal beam analysis and frequency is derived. Since the effects of focal beam analysis are linear with frequency simply, the multi-frequency focal beam analysis using interpolation is developed. At the same time, the resolution of different frequency bandwidth is interconvertible in accordance with Signal uncertainty principle. The resolution of all frequency bands can be calculated by using only a few focal beam analysis for a seismic survey. In the last section of this thesis, I propose a new approach to predicting acquisition footprint, based on the assumption of Common-Middle-Point stack without constructing a special velocity model. The approach is a simplistic analytical method in which the acquisition footprint pattern is a weighted, linear summation of limited-offset fold-of-stack plots. Because the value of acquisition can be got by quantificational and rapidly calculating, we can exactly do a comparative analysis among different plans of seismic survey by this method.
Resumo:
The South China Sea (SCS) is one of the largest marginal seas in the western Pacific, which is located at the junction of Eurasian plate, Pacific plate and Indian-Australian plate. It was formed by continent breakup and sea-floor spreading in Cenozoic. The complicated interaction among the three major plates made tectonic movement complex and geological phenomena very rich in this area. The SCS is an ideal place to study the formation and evolution of rifted continental margin and sea-floor spreading since it is old enough to have experienced the major stages of the basin evolution but still young enough to have preserved its original nature. As the demand for energy grows day by day in our country, the deep water region of the northern continental margin in the SCS has become a focus of oil and gas exploration because of its huge hydrocarbon potential. Therefore, to study the rifted continental margin of the SCS not only can improve our understanding of the formation and evolution processes of rifted continental margin, but also can provide theoretical support for hydrocarbon exploration in rifted continental margin. This dissertation mainly includes five topics as follows: (1) Various classic lithosphere stretching models are reviewed, and the continuous non-uniform stretching model is modified to make it suitable for the case where the extension of lithopheric mantle exceeds that of the crust. Then simple/pure shear flexural cantilever model is applied to model the basement geometries of SO49-18 profile in the northern continental margin of the SCS. By fitting the basements obtained by using 2DMove software with modeling results, it is found that the reasonable effective elastic thickness is less than 5km in this region. According to this result, it is assumed that there is weak lower crust in the northern continental margin in the SCS. (2) We research on the methods for stretching factor estimation based on various lithosphere stretching models, and apply the method based on multiple finite rifting model to estimate the stretching factors of several wells and profiles in the northern continental margin of the SCS. (3) We improve one-dimension strain rate inversion method with conjugate gradient method, and apply it to invert the strain rate of several wells in the northern continental margin of the SCS. Two-dimension strain rate forward modeling is carried out, and the modeling results show that effective elastic thickness is a key parameter to control basin’s geometry. (4) We simulate divergent upwelling mantle flow model using finite difference method, and apply this newly developed model to examine the formation mechanism of the northwest and central sub-basin in the SCS. (5) We inverse plate thickness and basal temperature of oceanic lithosphere using sea-floor ages and bathymetries of the North Pacific and the North Atlantic based on varied-parameters plate model, in which the heat conductivity, heat capacity and coefficient of thermal expansion depend on temperature or depth. A new empirical formula is put forward based the inversed parameters, which depicts the relation among sea-floor age, bathymetry and heat flow. Then various similar empirical formulae, including the newly developed one, are applied to examine the sea-floor spread issue in the SCS based on the heat flow and bathymetry data of the abyssal sub-basin.
Resumo:
This payer presents a concrete theoretical treatment which can be used for transforming the laser-induced fluorescence (LIF) intensity into the population and alignment parameters of a symmetric top molecule, The molecular population and alignment are described by molecular state multipoles. The results are presented in a general excitation-detection geometry and then specialized in some special geometries. The problem how to extract the initial molecular state multipoles from the rotationally resolved LIF intensity is discussed in detail. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
General expressions used for transforming raw laser-induced fluorescence (LIF) intensity into the population and alignment parameters of a symmetric top molecule are derived by employing the density matrix approach. The molecular population and alignment are described by molecular state multipoles. The results are presented for a general excitation-detection geometry and then applied to some special geometries. In general cases, the LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors and the excitation-detection geometrical factors. It contains a population and 14 alignment multipoles. How to extract all initial state multipoles from the rotationally unresolved emission LIF intensity is discussed in detail.
Resumo:
We describe a program called SketchIT capable of producing multiple families of designs from a single sketch. The program is given a rough sketch (drawn using line segments for part faces and icons for springs and kinematic joints) and a description of the desired behavior. The sketch is "rough" in the sense that taken literally, it may not work. From this single, perhaps flawed sketch and the behavior description, the program produces an entire family of working designs. The program also produces design variants, each of which is itself a family of designs. SketchIT represents each family of designs with a "behavior ensuring parametric model" (BEP-Model), a parametric model augmented with a set of constraints that ensure the geometry provides the desired behavior. The construction of the BEP-Model from the sketch and behavior description is the primary task and source of difficulty in this undertaking. SketchIT begins by abstracting the sketch to produce a qualitative configuration space (qc-space) which it then uses as its primary representation of behavior. SketchIT modifies this initial qc-space until qualitative simulation verifies that it produces the desired behavior. SketchIT's task is then to find geometries that implement this qc-space. It does this using a library of qc-space fragments. Each fragment is a piece of parametric geometry with a set of constraints that ensure the geometry implements a specific kind of boundary (qcs-curve) in qc-space. SketchIT assembles the fragments to produce the BEP-Model. SketchIT produces design variants by mapping the qc-space to multiple implementations, and by transforming rotating parts to translating parts and vice versa.
Resumo:
Binding, David; Phillips, P.M.; Philips, T.N., (2006) 'Contraction/expansion flows: The pressure drop and related issues', Journal of Non-Newtonian Fluid Mechanics 137 pp.31-38 RAE2008
Resumo:
McMillan, P. F., Wilson, M., Wilding, M. C. (2003). Polyamorphism in aluminate liquids. Journal of Physics: Condensed Matter, 15 (36), 6105-6121 RAE2008