976 resultados para fluorescence emission spectra


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports on the synthesis and characterisation of trans-(M)AB2C meso-substituted porphyrin amino acid esters (PAr) (M = 2H or Zn) with tunable electron donating and electron withdrawing Ar substituents at B positions (Ar = 4-C6H4OnBu, 4-C6H4OMe, 2,4,6-C6H2Me3, 4-C6H4Me, C6H5, 4-C6H4F, 4-C6H4CF3, C6F5). These porphyrins were used as key building blocks for photosynthetic LHC (LHC = light-harvesting antenna complex) and RC (RC = reaction center) model compounds.rnBased on free-base or zinc(II) porphyrin amino acid esters and porphyrin acids several amide linked free-base bis(porphyrins) PAr1-PAr2 (Ar1 = 2,4,6-C6H2Me3, C6F5 and Ar2 = 2,4,6-C6H2Me3, 4-C6H4F, 4-C6H4CF3, C6F5), mono metallated bis(porphyrin) PAr1-(Zn)PAr2 (Ar1 = 2,4,6-C6H2Me3 and Ar2 =4-C6H4F) and its doubly zincated complexes (Zn)PAr1-(Zn)PAr2 were prepared. In the fluorescence spectra of free-base bis(porphyrins) the porphyrin with the strongest electron donating power of Ar substituents at B positions is the light emitting unity. The emission of mono metallated bis(porphyrin) occurs only from the free-base porphyrin building block. This phenomenon is caused by an efficient energy transfer likely via the Dexter through-bond mechanism.rnLinking of anthraquinone (Q) as electron acceptor (A) to the N-terminus of porphyrin amino acid esters ((M)PAr) and aminoferrocene (Fc) as electron donor (D) to the C-terminus of the porphyrin resulting in Q-(M)PAr-Fc triads (M = 2H or Zn, Ar = 4-C6H4OnBu, 4-C6H4OMe, 2,4,6-C6H2Me3, 4-C6H4Me, C6H5, 4-C6H4F, 4-C6H4CF3, C6F5) with tunable electron density at the porphyrin chromophore. In these triads initial oxidative PET (Q←(M)PAr) and reductive PET ((M)PAr→Fc) (PET = photoinduced electron transfer) are possible. Both processes leads to an emission quenching of (M)PAr. The efficiency of the PET pathways occurring in the Marcus normal region is controlled by the specific porphyrin electron density.rnAmide-linked conjugates PAr-Fc (Ar = 2,4,6-C6H2Me3, C6F5) and Fmoc-Fc-PAr1 (N-Fmoc-Fc = N-Fmoc protected 1,1’-ferrocene amino acid; Ar1 = C6H5, 4-C6H4F, 4-C6H4CF3, C6F5) as well as hinges PAr2-Fc-PAr1 (Ar1 = C6H5, 4-C6H4F and Ar2 = 2,4,6-C6H2Me3) were studied with respect to the reductive PET. The PET driving force (−GET) in dyads increases with the increasing electron withdrawing character of Ar substituents. Additionally, intramolecular energy transfer between porphyrins PAr1 and PAr2 is feasible in the hinges via the Förster mechanism.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Das wichtigste Oxidationsmittel für den Abbau flüchtiger Kohlenwasserstoffverbindungen (VOC, engl.: volatile organic compounds) in der Atmosphäre ist das Hydroxylradikal (OH), welches sich in einem schnellen chemischen Gleichgewicht mit dem Hydroperoxylradical (HO2) befindet. Bisherige Messungen und Modellvergleiche dieser Radikalspezies in Waldgebieten haben signifikante Lücken im Verständnis der zugrundeliegenden Prozesse aufgezeigt.rnIm Rahmen dieser Doktorarbeit wurden Messungen von OH- und HO2-Radikalen mittelsrnlaserinduzierten Fluoreszensmesstechnik (LIF, engl.: laser-induced fluorescence) in einem Nadelwald in Süd-Finnland während der Messkampagne HUMPPA–COPEC–2010 (Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study) im Sommer 2010 durchgeführt. Unterschiedliche Komponenten des LIF-Instruments wurden verbessert. Eine modifizierte Methode zur Bestimmung des Hintergrundsignals (engl.: InletPreInjector technique) wurde in den Messaufbaurnintegriert und erstmals zur Messung von atmosphärischem OH verwendet. Vergleichsmessungen zweier Instrumente basierend auf unterschiedlichen Methoden zur Messung von OH-Radikalen, chemische Ionisationsmassenspektrometrie (CIMS - engl.: chemical ionization mass spectrometry) und LIF-Technik, zeigten eine gute Übereinstimmung. Die Vergleichsmessungen belegen das Vermögen und die Leistungsfähigkeit des modifizierten LIF-Instruments atmosphärische OH Konzentrationen akkurat zu messen. Nachfolgend wurde das LIF-Instrument auf der obersten Plattform eines 20m hohen Turmes positioniert, um knapp oberhalb der Baumkronen die Radikal-Chemie an der Schnittstelle zwischen Ökosystem und Atmosphäre zu untersuchen. Umfangreiche Messungen - dies beinhaltet Messungen der totalen OH-Reaktivität - wurden durchgeführt und unter Verwendung von Gleichgewichtszustandsberechnungen und einem Boxmodell, in welches die gemessenen Daten als Randbedingungen eingehen, analysiert. Wenn moderate OH-Reaktivitäten(k′(OH)≤ 15 s−1) vorlagen, sind OH-Produktionsraten, die aus gemessenen Konzentrationen von OH-Vorläuferspezies berechnet wurden, konsistent mit Produktionsraten, die unter der Gleichgewichtsannahme von Messungen des totalen OH Verlustes abgeleitet wurden. Die primären photolytischen OH-Quellen tragen mit einem Anteil von bis zu einem Drittel zur Gesamt-OH-Produktion bei. Es wurde gezeigt, dass OH-Rezyklierung unter Bedingungen moderater OH-Reaktivität hauptsächlich durch die Reaktionen von HO2 mit NO oder O3 bestimmt ist. Während Zeiten hoher OH-Reaktivität (k′(OH) > 15 s−1) wurden zusätzliche Rezyklierungspfade, die nicht über die Reaktionen von HO2 mit NO oder O3, sondern direkt OH bilden, aufgezeigt.rnFür Hydroxylradikale stimmen Boxmodell-Simulationen und Messungen gut übereinrn(OHmod/OHobs=1.04±0.16), während HO2-Mischungsverhältnisse in der Simulation signifikant unterschätzt werden (HO2mod/HO2obs=0.3±0.2) und die simulierte OH-Reaktivität nicht mit der gemessenen OH-Reaktivität übereinstimmt. Die gleichzeitige Unterschätzung der HO2-Mischungsverhältnisse und der OH-Reaktivität, während OH-Konzentrationen von der Simulation gut beschrieben werden, legt nahe, dass die fehlende OH-Reaktivität in der Simulation eine noch unberücksichtigte HO2-Quelle darstellt. Zusätzliche, OH-unabhängigernRO2/HO2-Quellen, wie z.B. der thermische Zerfall von herantransportiertem peroxyacetylnitrat (PAN) und die Photolyse von Glyoxal sind indiziert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports on the experimental realization of nanofiber-based spectroscopy of organic molecules. The light guided by subwavelength diameter optical nanfibers exhibits a pronounced evanescent field surrounding the fiber which yields high excitation and emission collection efficiencies for molecules on or near the fiber surface.rnThe optical nanofibers used for the experiments presented in this thesis are realized as thernsub-wavelength diameter waist of a tapered optical fiber (TOF). The efficient transfer of thernlight from the nanofiber waist to the unprocessed part of the TOF depends critically on therngeometric shape of the TOF transitions which represent a nonuniformity of the TOF. Thisrnnonuniformity can cause losses due to coupling of the fundamental guided mode to otherrnmodes which are not guided by the taper over its whole length. In order to quantify the lossrnfrom the fundamental mode due to tapering, I have solved the coupled local mode equationsrnin the approximation of weak guidance for the three layer system consisting of fiber core andrncladding as well as the surrounding vacuum or air, assuming the taper shape of the TOFsrnused for the experiments presented in this thesis. Moreover, I have empirically studied therninfluence of the TOF geometry on its transmission spectra and, based on the results, I haverndesigned a nanofiber-waist TOF with broadband transmission for experiments with organicrnmolecules.rnAs an experimental demonstration of the high sensitivity of nanofiber-based surface spectroscopy, I have performed various absorption and fluorescence spectroscopy measurements on the model system 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA). The measured homogeneous and inhomogeneous broadening of the spectra due to the interaction of the dielectric surface of the nanofiber with the surface-adsorbed molecules agrees well with the values theoretically expected and typical for molecules on surfaces. Furthermore, the self-absorption effects due to reasorption of the emitted fluorescence light by circumjacent surface-adsorbed molecules distributed along the fiber waist have been analyzed and quantified. With time-resolved measurements, the reorganization of PTCDA molecules to crystalline films and excimers can be observed and shown to be strongly catalyzed by the presence of water on the nanofiber surface. Moreover, the formation of charge-transfer complexes due to the interaction with localized surface defects has been studied. The collection efficiency of the molecular emission by the guided fiber mode has been determined by interlaced measurements of absorption and fluorescence spectra to be about 10% in one direction of the fiber.rnThe high emission collection efficiency makes optical nanofibers a well-suited tool for experiments with dye molecules embedded in small organic crystals. As a first experimental realization of this approach, terrylene-doped para-terphenyl crystals attached to the nanofiber-waist of a TOF have been studied at cryogenic temperatures via fluorescence and fluorescence excitation spectroscopy. The statistical fine structure of the fluorescence excitation spectrum for a specific sample has been observed and used to give an estimate of down to 9 molecules with center frequencies within one homogeneous width of the laser wavelength on average for large detunings from resonance. The homogeneous linewidth of the transition could be estimated to be about 190MHz at 4.5K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dysplasia in ulcerative colitis is frequently missed with 4-quadrant biopsies. An experimental setup recording delayed fluorescence spectra simultaneously with white light endoscopy was recently developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study develops an automated analysis tool by combining total internal reflection fluorescence microscopy (TIRFM), an evanescent wave microscopic imaging technique to capture time-sequential images and the corresponding image processing Matlab code to identify movements of single individual particles. The developed code will enable us to examine two dimensional hindered tangential Brownian motion of nanoparticles with a sub-pixel resolution (nanoscale). The measured mean square displacements of nanoparticles are compared with theoretical predictions to estimate particle diameters and fluid viscosity using a nonlinear regression technique. These estimated values will be confirmed by the diameters and viscosities given by manufacturers to validate this analysis tool. Nano-particles used in these experiments are yellow-green polystyrene fluorescent nanospheres (200 nm, 500 nm and 1000 nm in diameter (nominal); 505 nm excitation and 515 nm emission wavelengths). Solutions used in this experiment are de-ionized (DI) water, 10% d-glucose and 10% glycerol. Mean square displacements obtained near the surface shows significant deviation from theoretical predictions which are attributed to DLVO forces in the region but it conforms to theoretical predictions after ~125 nm onwards. The proposed automation analysis tool will be powerfully employed in the bio-application fields needed for examination of single protein (DNA and/or vesicle) tracking, drug delivery, and cyto-toxicity unlike the traditional measurement techniques that require fixing the cells. Furthermore, this tool can be also usefully applied for the microfluidic areas of non-invasive thermometry, particle tracking velocimetry (PTV), and non-invasive viscometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a multicore multidopant fiber which, when pumped with a single pump source around ∼800 nm , emits a more than one octave-spanning fluorescence spectrum ranging from 925 to 2300 nm . The fiber preform is manufactured from granulated oxides and the individual cores are doped with five different rare earths, i.e., Nd3+ , Yb3+ , Er3+ , Ho3+ , and Tm3+ .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregation-induced emission (AIE) was studied by hybridization of dialkynyl-tetraphenylethylene (DATPE) modified DNA strands. Molecular aggregation and fluorescence of DATPEs are controlled by duplex formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electronic absorption and fluorescence spectra based on transmission measurements of thin layers obtained from new perylene−zeolite L composites and new dye1,dye2−zeolite L sandwich composites, the latter acting as antenna systems, have been investigated and analyzed. The influence of extra- and intraparticle self-absorption on the spectral shape and fluorescence quantum yield is discussed in detail. Due to its intraparticle origin, self-absorption and re-emission can often not be avoided in organized systems such as dye−zeolite L composites where a high density of chromophores is a prerequisite for obtaining the desired photophysical properties. We show, however, that it can be avoided or at least minimized by preparing dye1,dye2−zeolite L sandwich composites where donors are present in a much larger amount than the acceptors because they act as antenna systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present steady-state absorption and emission spectroscopy and femtosecond broadband photoluminescence up-conversion spectroscopy studies of the electronic relaxation of Os(dmbp)3 (Os1) and Os(bpy)2(dpp) (Os2) in ethanol, where dmbp is 4,4′-dimethyl-2,2′-biypridine, bpy is 2,2′-biypridine, and dpp is 2,3-dipyridyl pyrazine. In both cases, the steady-state phosphorescence is due to the lowest 3MLCT state, whose quantum yield we estimate to be ≤5.0 × 10–3. For Os1, the steady-state phosphorescence lifetime is 25 ns. In both complexes, the photoluminescence excitation spectra map the absorption spectrum, pointing to an excitation wavelength-independent quantum yield. The ultrafast studies revealed a short-lived (≤100 fs) fluorescence, which stems from the lowest singlet metal-to-ligand-charge-transfer (1MLCT) state and decays by intersystem crossing to the manifold of 3MLCT states. In addition, Os1 exhibits a 50 ps lived emission from an intermediate triplet state at an energy 2000 cm–1 above that of the long-lived (25 ns) phosphorescence. In Os2, the 1MLCT–3MLCT intersystem crossing is faster than that in Os1, and no emission from triplet states is observed other than the lowest one. These observations are attributed to a higher density of states or a smaller energy spacing between them compared with Os1. They highlight the importance of the energetics on the rate of intersystem crossing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Fundus autofluorescence (FAF) cannot only be characterized by the intensity or the emission spectrum, but also by its lifetime. As the lifetime of a fluorescent molecule is sensitive to its local microenvironment, this technique may provide more information than fundus autofluorescence imaging. We report here the characteristics and repeatability of FAF lifetime measurements of the human macula using a new fluorescence lifetime imaging ophthalmoscope (FLIO). METHODS A total of 31 healthy phakic subjects were included in this study with an age range from 22 to 61 years. For image acquisition, a fluorescence lifetime ophthalmoscope based on a Heidelberg Engineering Spectralis system was used. Fluorescence lifetime maps of the retina were recorded in a short- (498-560 nm) and a long- (560-720 nm) spectral channel. For quantification of fluorescence lifetimes a standard ETDRS grid was used. RESULTS Mean fluorescence lifetimes were shortest in the fovea, with 208 picoseconds for the short-spectral channel and 239 picoseconds for the long-spectral channel, respectively. Fluorescence lifetimes increased from the central area to the outer ring of the ETDRS grid. The test-retest reliability of FLIO was very high for all ETDRS areas (Spearman's ρ = 0.80 for the short- and 0.97 for the long-spectral channel, P < 0.0001). Fluorescence lifetimes increased with age. CONCLUSIONS The FLIO allows reproducible measurements of fluorescence lifetimes of the macula in healthy subjects. By using a custom-built software, we were able to quantify fluorescence lifetimes within the ETDRS grid. Establishing a clinically accessible standard against which to measure FAF lifetimes within the retina is a prerequisite for future studies in retinal disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipid resonances from mobile lipids can be observed by (1)H NMR spectroscopy in multiple tissues and have also been associated with malignancy. In order to use lipid resonances as a marker for disease, a reference standard from a healthy tissue has to be established taking the influence of variable factors like the spinning rate into account. The purpose of our study was to investigate the effect of spinning rate variation on the HR-MAS pattern of lipid resonances in non-neoplastic brain biopsies from different regions and visualize polar and non-polar lipids by fluorescence microscopy using Nile Red staining. (1)H HR-MAS NMR spectroscopy demonstrated higher lipid peak intensities in normal sheep brain pure white matter biopsies compared to mixed white and gray matter biopsies and pure gray matter biopsies. High spinning rates increased the visibility particularly of the methyl resonances at 1.3 and the methylene resonance at 0.89ppm in white matter biopsies stronger compared to thalamus and brainstem biopsies, and gray matter biopsies. The absence of lipid droplets and presence of a large number of myelin sheaths observed in white matter by Nile Red fluorescence microscopy suggest that the observed lipid resonances originate from the macromolecular pool of lipid protons of the myelin sheath's plasma membranes. When using lipid contents as a marker for disease, the variable behavior of lipid resonances in different neuroanatomical regions of the brain and at variable spinning rates should be considered. The findings may open up interesting possibilities for investigating lipids in myelin sheaths.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The S0 ↔ S1 spectra of the mild charge-transfer (CT) complexes perylene·tetrachloroethene (P·4ClE) and perylene·(tetrachloroethene)2 (P·(4ClE)2) are investigated by two-color resonant two-photon ionization (2C-R2PI) and dispersed fluorescence spectroscopy in supersonic jets. The S0 → S1 vibrationless transitions of P·4ClE and P·(4ClE)2 are shifted by δν = −451 and −858 cm–1 relative to perylene, translating to excited-state dissociation energy increases of 5.4 and 10.3 kJ/mol, respectively. The red shift is ∼30% larger than that of perylene·trans-1,2-dichloroethene; therefore, the increase in chlorination increases the excited-state stabilization and CT character of the interaction, but the electronic excitation remains largely confined to the perylene moiety. The 2C-R2PI and fluorescence spectra of P·4ClE exhibit strong progressions in the perylene intramolecular twist (1au) vibration (42 cm–1 in S0 and 55 cm–1 in S1), signaling that perylene deforms along its twist coordinate upon electronic excitation. The intermolecular stretching (Tz) and internal rotation (Rc) vibrations are weak; therefore, the P·4ClE intermolecular potential energy surface (IPES) changes little during the S0 ↔ S1 transition. The minimum-energy structures and inter- and intramolecular vibrational frequencies of P·4ClE and P·(4ClE)2 are calculated with the dispersion-corrected density functional theory (DFT) methods B97-D3, ωB97X-D, M06, and M06-2X and the spin-consistent-scaled (SCS) variant of the approximate second-order coupled-cluster method, SCS-CC2. All methods predict the global minima to be π-stacked centered coplanar structures with the long axis of tetrachloroethene rotated by τ ≈ 60° relative to the perylene long axis. The calculated binding energies are in the range of −D0 = 28–35 kJ/mol. A second minimum is predicted with τ ≈ 25°, with ∼1 kJ/mol smaller binding energy. Although both monomers are achiral, both the P·4ClE and P·(4ClE)2 complexes are chiral. The best agreement for adiabatic excitation energies and vibrational frequencies is observed for the ωB97X-D and M06-2X DFT methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Ocean Drilling Program Sites 1001A (Caribbean Sea) and 1050C (western North Atlantic) display obliquity and precession cycles throughout polarity zone C27 of the late Danian stage (earliest Cenozoic time). Sliding-window spectra analysis and direct cycle counting on downhole logs and high-resolution Fe variations at both sites yield the equivalent of 35-36 obliquity cycles. This cycle-tuned duration for polarity chron C27 of 1.45 Ma (applying a modern mean obliquity period of 40.4 ka) is consistent with trends from astronomical tuning of early Danian polarity chron C29 and 40Ar/39Ar age calibration of the Campanian-Maastrichtian magnetic polarity time scale. The cycle-tuned Danian stage (sensu Berggren et al. 1995, in SEPM Special Publications, 54, 129-212) spans 3.65 Ma (65.5-61.85 Ma). Spreading rates on a reference South Atlantic synthetic profile display progressive slowing during the Maastrichtian to Danian stages, then remained relatively constant through late Palaeocene and early Eocene time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bimodal, alkaline volcanic suite of the Kap Washington Group (KWG) at the northern coast of Greenland was investigated during the BGR CASE 2 expedition in 1994. Geochemical and Nd and Sr isotopic data are presented for basalts to rhyolites of the KWG and of related basaltic dykes cutting Lower Paleozoic sediments. In the evd(t) vs. (87Sr/86Sr)t diagram, the KWG basalts and rhyolites follow a common mixing trend with increasing crustal contamination from basic to acid volcanites. Assimilation of pre-existing crustal rocks during formation of the rhyolitic melt is documented by Nd model ages of 0.9-1.2 Ga and by different fractionation trends for the basalts and the rhyolites in the Y vs. Zr diagram. Petrographical and geochemical features indicate intra-plate volcanism which was active most probably during a continental rifting phase. A new Rb/Sr whole rock age on rhyolites of 64 ±3 Ma, corresponding to the result of LARSEN (1982), confirms that the volcanic activity lasted until the Cretaceous-Tertiary boundary. 40Ar139Ar dating on amphibol separates from a comendite yielded strongly disturbed age spectra with a minimum age of 37.7 ±0.3 Ma. This age is interpreted to date a hydrothermal overprint of the volcanic rocks related to compressive tectonics which led to the overthrust of basement rocks over the Kap Washington Group.