919 resultados para exploratory spatial data analysis
Resumo:
The objective of this chapter is to quantify the neuropathology of the cerebellar cortex in cases of the prion disease variant Creutzfeldt-Jakob disease (vCJD). Hence, sequential sections of the cerebellum of 15 cases of vCJD were stained with H/E, or immunolabelled with a monoclonal antibody 12F10 against prion protein (PrP) and studied using quantitative techniques and spatial pattern analysis. A significant loss of Purkinje cells was evident in all cases. Densities of the vacuolation and the protease resistant form of prion protein (PrPSc) in the form of diffuse and florid plaques were greater in the granule cell layer (GL) than the molecular layer (ML). In the ML, vacuoles and PrPSc plaques, occurred in clusters which were regularly distributed along the folia, larger clusters of vacuoles and diffuse plaques being present in the GL. There was a negative spatial correlation between the vacuoles and the surviving Purkinje cells in the ML and a positive spatial correlation between the clusters of vacuoles and the diffuse PrPSc plaques in the ML and GL in five and six cases respectively. A canonical variate analysis (CVA) suggested a negative correlation between the densities of the vacuolation in the GL and the diffuse PrPSc plaques in the ML. The data suggest: 1) all laminae of the cerebellar cortex were affected by the pathology of vCJD, the GL more severely than the ML, 2) the pathology was topographically distributed especially in the Purkinje cell layer and GL, 3) pathological spread may occur in relation to a loop of anatomical projections connecting the cerebellum, thalamus, cerebral cortex, and pons, and 4) there are differences in the pathology of the cerebellum in vCJD compared with the M/M1 subtype of sporadic CJD (sCJD).
Resumo:
The use of quantitative methods has become increasingly important in the study of neuropathology and especially in neurodegenerative disease. Disorders such as Alzheimer's disease (AD) and the frontotemporal dementias (FTD) are characterized by the formation of discrete, microscopic, pathological lesions which play an important role in pathological diagnosis. This chapter reviews the advantages and limitations of the different methods of quantifying pathological lesions in histological sections including estimates of density, frequency, coverage, and the use of semi-quantitative scores. The sampling strategies by which these quantitative measures can be obtained from histological sections, including plot or quadrat sampling, transect sampling, and point-quarter sampling, are described. In addition, data analysis methods commonly used to analysis quantitative data in neuropathology, including analysis of variance (ANOVA), polynomial curve fitting, multiple regression, classification trees, and principal components analysis (PCA), are discussed. These methods are illustrated with reference to quantitative studies of a variety of neurodegenerative disorders.
Resumo:
We develop an analytical model based on the WKB approach to evaluate the experimental results of the femtosecond pump-probe measurements of the transmittance and reflectance obtained on thin membranes of porous silicon. The model allows us to retrieve a pump-induced nonuniform complex dielectric function change along the membrane depth. We show that the model fitting to the experimental data requires a minimal number of fitting parameters while still complying with the restriction imposed by the Kramers-Kronig relation. The developed model has a broad range of applications for experimental data analysis and practical implementation in the design of devices involving a spatially nonuniform dielectric function, such as in biosensing, wave-guiding, solar energy harvesting, photonics and electro-optical devices.
Resumo:
This paper presents the results of our data mining study of Pb-Zn (lead-zinc) ore assay records from a mine enterprise in Bulgaria. We examined the dataset, cleaned outliers, visualized the data, and created dataset statistics. A Pb-Zn cluster data mining model was created for segmentation and prediction of Pb-Zn ore assay data. The Pb-Zn cluster data model consists of five clusters and DMX queries. We analyzed the Pb-Zn cluster content, size, structure, and characteristics. The set of the DMX queries allows for browsing and managing the clusters, as well as predicting ore assay records. A testing and validation of the Pb-Zn cluster data mining model was developed in order to show its reasonable accuracy before beingused in a production environment. The Pb-Zn cluster data mining model can be used for changes of the mine grinding and floatation processing parameters in almost real-time, which is important for the efficiency of the Pb-Zn ore beneficiation process. ACM Computing Classification System (1998): H.2.8, H.3.3.
Resumo:
Diabetes patients might suffer from an unhealthy life, long-term treatment and chronic complicated diseases. The decreasing hospitalization rate is a crucial problem for health care centers. This study combines the bagging method with base classifier decision tree and costs-sensitive analysis for diabetes patients' classification purpose. Real patients' data collected from a regional hospital in Thailand were analyzed. The relevance factors were selected and used to construct base classifier decision tree models to classify diabetes and non-diabetes patients. The bagging method was then applied to improve accuracy. Finally, asymmetric classification cost matrices were used to give more alternative models for diabetes data analysis.
Resumo:
Systematic, high-quality observations of the atmosphere, oceans and terrestrial environments are required to improve understanding of climate characteristics and the consequences of climate change. The overall aim of this report is to carry out a comparative assessment of approaches taken to addressing the state of European observations systems and related data analysis by some leading actors in the field. This research reports on approaches to climate observations and analyses in Ireland, Switzerland, Germany, The Netherlands and Austria and explores options for a more coordinated approach to national responses to climate observations in Europe. The key aspects addressed are: an assessment of approaches to develop GCOS and provision of analysis of GCOS data; an evaluation of how these countries are reporting development of GCOS; highlighting best practice in advancing GCOS implementation including analysis of Essential Climate Variables (ECVs); a comparative summary of the differences and synergies in terms of the reporting of climate observations; an overview of relevant European initiatives and recommendations on how identified gaps might be addressed in the short to medium term.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The graph Laplacian operator is widely studied in spectral graph theory largely due to its importance in modern data analysis. Recently, the Fourier transform and other time-frequency operators have been defined on graphs using Laplacian eigenvalues and eigenvectors. We extend these results and prove that the translation operator to the i’th node is invertible if and only if all eigenvectors are nonzero on the i’th node. Because of this dependency on the support of eigenvectors we study the characteristic set of Laplacian eigenvectors. We prove that the Fiedler vector of a planar graph cannot vanish on large neighborhoods and then explicitly construct a family of non-planar graphs that do exhibit this property. We then prove original results in modern analysis on graphs. We extend results on spectral graph wavelets to create vertex-dyanamic spectral graph wavelets whose support depends on both scale and translation parameters. We prove that Spielman’s Twice-Ramanujan graph sparsifying algorithm cannot outperform his conjectured optimal sparsification constant. Finally, we present numerical results on graph conditioning, in which edges of a graph are rescaled to best approximate the complete graph and reduce average commute time.
Resumo:
Background: Understanding transcriptional regulation by genome-wide microarray studies can contribute to unravel complex relationships between genes. Attempts to standardize the annotation of microarray data include the Minimum Information About a Microarray Experiment (MIAME) recommendations, the MAGE-ML format for data interchange, and the use of controlled vocabularies or ontologies. The existing software systems for microarray data analysis implement the mentioned standards only partially and are often hard to use and extend. Integration of genomic annotation data and other sources of external knowledge using open standards is therefore a key requirement for future integrated analysis systems. Results: The EMMA 2 software has been designed to resolve shortcomings with respect to full MAGE-ML and ontology support and makes use of modern data integration techniques. We present a software system that features comprehensive data analysis functions for spotted arrays, and for the most common synthesized oligo arrays such as Agilent, Affymetrix and NimbleGen. The system is based on the full MAGE object model. Analysis functionality is based on R and Bioconductor packages and can make use of a compute cluster for distributed services. Conclusion: Our model-driven approach for automatically implementing a full MAGE object model provides high flexibility and compatibility. Data integration via SOAP-based web-services is advantageous in a distributed client-server environment as the collaborative analysis of microarray data is gaining more and more relevance in international research consortia. The adequacy of the EMMA 2 software design and implementation has been proven by its application in many distributed functional genomics projects. Its scalability makes the current architecture suited for extensions towards future transcriptomics methods based on high-throughput sequencing approaches which have much higher computational requirements than microarrays.
Resumo:
Dissertação de Mestrado, Gestão de Unidades de Saúde, Faculdade de Economia, Universidade do Algarve, 2016
Resumo:
The study of complex systems has become a prestigious area of science, although relatively young . Its importance was demonstrated by the diversity of applications that several studies have already provided to various fields such as biology , economics and Climatology . In physics , the approach of complex systems is creating paradigms that influence markedly the new methods , bringing to Statistical Physics problems macroscopic level no longer restricted to classical studies such as those of thermodynamics . The present work aims to make a comparison and verification of statistical data on clusters of profiles Sonic ( DT ) , Gamma Ray ( GR ) , induction ( ILD ) , neutron ( NPHI ) and density ( RHOB ) to be physical measured quantities during exploratory drilling of fundamental importance to locate , identify and characterize oil reservoirs . Software were used : Statistica , Matlab R2006a , Origin 6.1 and Fortran for comparison and verification of the data profiles of oil wells ceded the field Namorado School by ANP ( National Petroleum Agency ) . It was possible to demonstrate the importance of the DFA method and that it proved quite satisfactory in that work, coming to the conclusion that the data H ( Hurst exponent ) produce spatial data with greater congestion . Therefore , we find that it is possible to find spatial pattern using the Hurst coefficient . The profiles of 56 wells have confirmed the existence of spatial patterns of Hurst exponents , ie parameter B. The profile does not directly assessed catalogs verification of geological lithology , but reveals a non-random spatial distribution
Resumo:
By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment.
Resumo:
Progress in control of bovine tuberculosis (bTB) is often not uniform, usually due to the effect of one or more sometimes unknown epidemiological factors impairing the success of eradication programs. Use of spatial analysis can help to identify clusters of persistence of disease, leading to the identification of these factors thus allowing the implementation of targeted control measures, and may provide some insights of disease transmission, particularly when combined with molecular typing techniques. Here, the spatial dynamics of bTB in a high prevalence region of Spain were assessed during a three year period (2010-2012) using data from the eradication campaigns to detect clusters of positive bTB herds and of those infected with certain Mycobacterium bovis strains (characterized using spoligotyping and VNTR typing). In addition, the within-herd transmission coefficient (β) was estimated in infected herds and its spatial distribution and association with other potential outbreak and herd variables was evaluated. Significant clustering of positive herds was identified in the three years of the study in the same location ("high risk area"). Three spoligotypes (SB0339, SB0121 and SB1142) accounted for >70% of the outbreaks detected in the three years. VNTR subtyping revealed the presence of few but highly prevalent strains within the high risk area, suggesting maintained transmission in the area. The spatial autocorrelation found in the distribution of the estimated within-herd transmission coefficients in herds located within distances <14 km and the results of the spatial regression analysis, support the hypothesis of shared local factors affecting disease transmission in farms located at a close proximity.
Resumo:
Introducción: El Cáncer es prevenible en algunos casos, si se evita la exposición a sustancias cancerígenas en el medio ambiente. En Colombia, Cundinamarca es uno de los departamentos con mayores incrementos en la tasa de mortalidad y en el municipio de Sibaté, habitantes han manifestado preocupación por el incremento de la enfermedad. En el campo de la salud ambiental mundial, la georreferenciación aplicada al estudio de fenómenos en salud, ha tenido éxito con resultados válidos. El estudio propuso usar herramientas de información geográfica, para generar análisis de tiempo y espacio que hicieran visible el comportamiento del cáncer en Sibaté y sustentaran hipótesis de influencias ambientales sobre concentraciones de casos. Objetivo: Obtener incidencia y prevalencia de casos de cáncer en habitantes de Sibaté y georreferenciar los casos en un periodo de 5 años, con base en indagación de registros. Metodología: Estudio exploratorio descriptivo de corte transversal,sobre todos los diagnósticos de cáncer entre los años 2010 a 2014, encontrados en los archivos de la Secretaria de Salud municipal. Se incluyeron unicamente quienes tuvieron residencia permanente en el municipio y fueron diagnosticados con cáncer entre los años de 2010 a 2104. Sobre cada caso se obtuvo género, edad, estrato socioeconómico, nivel académico, ocupación y estado civil. Para el análisis de tiempo se usó la fecha de diagnóstico y para el análisis de espacio, la dirección de residencia, tipo de cáncer y coordenada geográfica. Se generaron coordenadas geográficas con un equipo GPS Garmin y se crearon mapas con los puntos de la ubicación de las viviendas de los pacientes. Se proceso la información, con Epi Info 7 Resultados: Se encontraron 107 casos de cáncer registrados en la Secretaria de Salud de Sibaté, 66 mujeres, 41 hombres. Sin división de género, el 30.93% de la población presento cáncer del sistema reproductor, el 18,56% digestivo y el 17,53% tegumentario. Se presentaron 2 grandes casos de agrupaciones espaciales en el territorio estudiado, una en el Barrio Pablo Neruda con 12 (21,05%) casos y en el casco Urbano de Sibaté con 38 (66,67%) casos. Conclusión: Se corroboro que el análisis geográfico con variables espacio temporales y de exposición, puede ser la herramienta para generar hipótesis sobre asociaciones de casos de cáncer con factores ambientales.
Resumo:
Pacchetto R per il supporto dell'analisi di dati spazio temporali. Il pacchetto fornisce due funzioni, le quali permettono di avviare due applicazioni web, sviluppate con il framework shiny, per la visualizzazione di dati con connotazione spaziale di tipo areale o puntuale. Le applicazioni generano, a partire dai dati caricati dall'utente, due grafici interattivi per la visualizzazione della distribuzione temporale e spaziale del fenomeno che i dati descrivono. Sono previsti, all'interno dell'interfaccia utente delle applicazioni, una serie di componenti che permettono di personalizzare i grafici prodotti.