916 resultados para exosome activation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of a large number of studies on G protein-coupled receptors was centered on understanding the structural basis of their main functional properties. Here, we will briefly review the results obtained on the alpha1-adrenergic receptor subtypes belonging to the rhodopsin-like family of receptors. These findings contribute, on the one hand, to further understand the molecular basis of adrenergic transmission and, on the other, to provide some generalities on the structure-functional relationship of G protein-coupled receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordinated interactions between T and B cells are crucial for inducing physiological B cell responses. Mutant mice in which tyrosine 136 of linker for activation of T cell (LAT) is replaced by a phenylalanine (Lat(Y136F)) exhibit a strong CD4(+) T cell proliferation in the absence of intended immunization. The resulting effector T cells produce high amounts of T(H)2 cytokines and are extremely efficient at inducing polyclonal B cell activation. As a consequence, these Lat(Y136F) mutant mice showed massive germinal center formations and hypergammaglobulinemia. Here, we analyzed the involvement of different costimulators and their ligands in such T-B interactions both in vitro and in vivo, using blocking antibodies, knockout mice, and adoptive transfer experiments. Surprisingly, we showed in vitro that although B cell activation required contact with T cells, CD40, and inducible T cell costimulator molecule-ligand (ICOSL) signaling were not necessary for this process. These observations were further confirmed in vivo, where none of these molecules were required for the unfolding of the LAT CD4(+) T cell expansion and the subsequent polyclonal B cell activation, although, the absence of CD40 led to a reduction of the follicular B cell response. These results indicate that the crucial functions played by CD40 and ICOSL in germinal center formation and isotype switching in physiological humoral responses are partly overcome in Lat(Y136F) mice. By comparison, the absence of CD80-CD86 was found to almost completely block the in vitro B cell activation mediated by Lat(Y136F) CD4(+) T cells. The role of CD80-CD86 in T-B cooperation in vivo remained elusive due to the upstream implication of these costimulatory molecules in the expansion of Lat(Y136F) CD4(+) T cells. Together, our data suggest that CD80 and CD86 costimulators play a key role in the polyclonal B cell activation mediated by Lat(Y136F) CD4(+) T cells even though additional costimulatory molecules or cytokines are likely to be required in this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NKG2D is a multisubunit activation receptor that allows natural killer (NK) cells to detect and eliminate stressed, infected, and transformed host cells. However, the chronic exposure of NK cells to cell-bound NKG2D ligands has been shown to impair NKG2D function both in vitro and in vivo. Here we have tested whether continuous NKG2D engagement selectively impacted NKG2D function or whether heterologous NK cell activation pathways were also affected. We found that sustained NKG2D engagement induced cross-tolerization of several unrelated NK cell activation receptors. We show that receptors that activate NK cells via the DAP12/KARAP and DAP10 signaling adaptors, such as murine NKG2D and Ly49D, cross-tolerize preferentially NK cell activation pathways that function independent of DAP10/12, such as antibody-dependent cell-mediated cytotoxicity and missing-self recognition. Conversely, DAP10/12-independent pathways are unable to cross-tolerize unrelated NK cell activation receptors such as NKG2D or Ly49D. These data define a class of NK cell activation receptors that can tolerize mature NK cells. The reversible suppression of the NK cells' cytolytic function probably reduces the NK cells' efficacy to control endogenous and exogenous stress yet may be needed to limit tissue damage

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT: A shortening of the atrial refractory period has been considered as the main mechanism for the increased risk of atrial fibrillation in hyperthyroidism. However, other important factors may be involved. OBJECTIVE: Our objective was to determine the activity of abnormal supraventricular electrical depolarizations in response to elevated thyroid hormones in patients without structural heart disease. PATIENTS AND DESIGN: Twenty-eight patients (25 females, three males, mean age 43+/-11 yr) with newly diagnosed and untreated hyperthyroidism were enrolled in a prospective trial after exclusion of heart disease. Patients were followed up for 16 +/- 6 months and studied at baseline and 6 months after normalization of serum TSH levels. MAIN OUTCOME MEASURES: The incidence of abnormal premature supraventricular depolarizations (SVPD) and the number of episodes of supraventricular tachycardia was defined as primary outcome measurements before the start of the study. In addition, heart rate oscillations (turbulence) after premature depolarizations and heart rate variability were compared at baseline and follow-up. RESULTS: SVPDs decreased from 59 +/- 29 to 21 +/- 8 per 24 h (P = 0.003), very early SVPDs (so called P on T) decreased from 36 +/- 24 to 3 +/- 1 per 24 h (P < 0.0001), respectively, and nonsustained supraventricular tachycardias decreased from 22 +/- 11 to 0.5 +/- 0.2 per 24 h (P = 0.01) after normalization of serum thyrotropin levels. The hyperthyroid phase was characterized by an increased heart rate (93 +/- 14 vs. 79 +/- 8 beats/min, P < 0.0001) and a decreased turbulence slope (3.6 vs. 9.2, P = 0.003), consistent with decreased vagal tone. This was confirmed by a significant decrease of heart rate variability. CONCLUSION: Hyperthyroidism is associated with an increased supraventricular ectopic activity in patients with normal hearts. The activation of these arrhythmogenic foci by elevated thyroid hormones may be an important causal link between hyperthyroidism and atrial fibrillation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last few years, most OECD countries have extended their activation policy to new groups of non-working people, including the long-term unemployed (LTU). However, it is widely known that employers tend to regard LTU people as potentially problematic persons. This is likely to constitute a major obstacle for long-term unemployed jobseekers. On the basis of a survey among employers in a Swiss canton (N = 722), this article aims to shed light on the perception employers have of the long-term unemployed and whether this may matter for their recruitment practices. It also asks what, from the employer point of view, may facilitate access to employment for an LTU person. A key finding is that large companies have a worse image of the long-term unemployed and are less likely to hire them. Furthermore, independent of company size, a test period or the recommendation of a trustworthy person is seen as the factors most likely to facilitate access to jobs for LTU people.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rad51 and its meiotic homolog Dmc1 are key proteins of homologous recombination in eukaryotes. These proteins form nucleoprotein complexes on single-stranded DNA that promote a search for homology and that perform DNA strand exchange, the two essential steps of genetic recombination. Previously, we demonstrated that Ca2+ greatly stimulates the DNA strand exchange activity of human (h) Rad51 protein (Bugreev, D. V., and Mazin, A. V. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 9988-9993). Here, we show that the DNA strand exchange activity of hDmc1 protein is also stimulated by Ca2+. However, the mechanism of stimulation of hDmc1 protein appears to be different from that of hRad51 protein. In the case of hRad51 protein, Ca2+ acts primarily by inhibiting its ATPase activity, thereby preventing self-conversion into an inactive ADP-bound complex. In contrast, we demonstrate that hDmc1 protein does not self-convert into a stable ADP-bound complex. The results indicate that activation of hDmc1 is mediated through conformational changes induced by free Ca2+ ion binding to a protein site that is distinct from the Mg2+.ATP-binding center. These conformational changes are manifested by formation of more stable filamentous hDmc1.single-stranded DNA complexes. Our results demonstrate a universal role of Ca2+ in stimulation of mammalian DNA strand exchange proteins and reveal diversity in the mechanisms of this stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the NF-kappaB pathway in T cells is required for induction of an adaptive immune response. Hematopoietic progenitor kinase (HPK1) is an important proximal mediator of T-cell receptor (TCR)-induced NF-kappaB activation. Knock-down of HPK1 abrogates TCR-induced IKKbeta and NF-kappaB activation, whereas active HPK1 leads to increased IKKbeta activity in T cells. Yet, the precise molecular mechanism of this process remains elusive. Here, we show that HPK1-mediated NF-kappaB activation is dependent on the adaptor protein CARMA1. HPK1 interacts with CARMA1 in a TCR stimulation-dependent manner and phosphorylates the linker region of CARMA1. Interestingly, the putative HPK1 phosphorylation sites in CARMA1 are different from known PKC consensus sites. Mutations of residues S549, S551, and S552 in CARMA1 abrogated phosphorylation of a CARMA1-linker construct by HPK1 in vitro. In addition, CARMA1 S551A or S5549A/S551A point mutants failed to restore HPK1-mediated and TCR-mediated NF-kappaB activation and IL-2 expression in CARMA1-deficient T cells. Thus, we identify HPK1 as a kinase specific for CARMA1 and suggest HPK1-mediated phosphorylation of CARMA1 as an additional regulatory mechanism tuning the NF-kappaB response upon TCR stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres) that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34(+) stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an "off-the-shelf" product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM/HYPOTHESIS: IL-6 induces insulin resistance by activating signal transducer and activator of transcription 3 (STAT3) and upregulating the transcription of its target gene SOCS3. Here we examined whether the peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW501516 prevented activation of the IL-6-STAT3-suppressor of cytokine signalling 3 (SOCS3) pathway and insulin resistance in human hepatic HepG2 cells. METHODS: Studies were conducted with human HepG2 cells and livers from mice null for Pparβ/δ (also known as Ppard) and wild-type mice. RESULTS: GW501516 prevented IL-6-dependent reduction in insulin-stimulated v-akt murine thymoma viral oncogene homologue 1 (AKT) phosphorylation and in IRS-1 and IRS-2 protein levels. In addition, treatment with this drug abolished IL-6-induced STAT3 phosphorylation of Tyr⁷⁰⁵ and Ser⁷²⁷ and prevented the increase in SOCS3 caused by this cytokine. Moreover, GW501516 prevented IL-6-dependent induction of extracellular-related kinase 1/2 (ERK1/2), a serine-threonine protein kinase involved in serine STAT3 phosphorylation; the livers of Pparβ/δ-null mice showed increased Tyr⁷⁰⁵- and Ser⁷²⁷-STAT3 as well as phospho-ERK1/2 levels. Furthermore, drug treatment prevented the IL-6-dependent reduction in phosphorylated AMP-activated protein kinase (AMPK), a kinase reported to inhibit STAT3 phosphorylation on Tyr⁷⁰⁵. In agreement with the recovery in phospho-AMPK levels observed following GW501516 treatment, this drug increased the AMP/ATP ratio and decreased the ATP/ADP ratio. CONCLUSIONS/INTERPRETATION: Overall, our findings show that the PPARβ/δ activator GW501516 prevents IL-6-induced STAT3 activation by inhibiting ERK1/2 phosphorylation and preventing the reduction in phospho-AMPK levels. These effects of GW501516 may contribute to the prevention of cytokine-induced insulin resistance in hepatic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: We recently observed in a chronic ovine model that a shortening of action potential duration (APD) as assessed by the activation recovery interval (ARI) may be a mechanism whereby pacing-induced atrial tachycardia (PIAT) facilitates atrial fibrillation (AF), mediated by a return to 1:1 atrial capture after the effective refractory period has been reached. The aim of the present study is to evaluate the effect of long term intermittent burst pacing on ARI before induction of AF.Methods: We specifically developed a chronic ovine model of PIAT using two pacemakers (PM) each with a right atrial (RA) lead separated by ∼2cm. The 1st PM (Vitatron T70) was used to record a broadband unipolar RA EGM (800 Hz, 0.4 Hz high pass filter). The 2nd was used to deliver PIAT during electrophysiological protocols at decremental pacing CL (400 beats, from 400 to 110ms) and long term intermittent RA burst pacing to promote electrical remodeling (5s of burst followed by 2s of sinus rhythm) until onset of sustained AF. ARI was defined as the time difference between the peak of the atrial repolarization wave and the first atrial depolarization. The mean ARIs of paired sequences (before and after remodeling), each consisting of 20 beats were compared.Results: As shown in the figure, ARIs (n=4 sheep, 46 recordings) decreased post remodeling compared to baseline (86±19 vs 103±12 ms, p<0.05). There was no difference in atrial structure as assessed by light microscopy between control and remodeled sheep.Conclusions: Using standard pacemaker technology, atrial ARIs as a surrogate of APDs were successfully measured in vivo during the electrical remodeling process leading to AF. The facilitation of AF by PIAT mimicking salvos from pulmonary veins is heralded by a significant shortening of ARI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated circulating concentrations in modified LDL-cholesterol particles (e.g. oxidised LDL) and low levels in HDL increase not only the risk for diabetic patients to develop cardiovascular diseases but also may contribute to development and progression of diabetes by directly having adverse effects on β-cells. Chronic exposure of β-cells to 2 mM human oxidised LDL-cholesterol (oxLDL) increases the rate of apoptosis, reduce insulin biosynthesis and the secretory capacity of the cells in response to nutrients. In line with the protective role, HDL efficiently antagonised the harmful effects of ox- LDL, suggesting that low levels of HDL would be inefficient to protect β-cells against oxLDL attack in patients. Activation of endoplasmic reticulum (ER) stress is pointed out to contribute to β-cell dysfunction elicited by environmental stressors. In this study we investigated whether activation of ER stress is required for oxLDL to mediate detrimental effects on β-cells and we tested the potential antagonist properties of HDL: The mouse MIN6 insulin-secreting cells were cultured with 2 mM of LDL-cholesterol preparation (native or in vitro oxidized) in the presence or absence of 1 mM of HDL-cholesterol or the ER stress inhibitor 4-phenylbutyrate (4-PBA): Prolonged exposure of MIN6 cells to 2 mM oxLDL-cholesterol for 48 hours led to an increase in expression of ER stress markers such as ATF4, CHOP and p58 and stimulated the splicing of XBP-1 whereas, induction of these markers was not observable in the cells cultured with native LDL. Treatment of the cells with the 4-PBA chemical chaperone molecule efficiently blocked activation of the ER stress markers induced by oxLDL. The latter mediates β-cell dysfunction and apoptosis by diminishing the expression of islet brain 1 (IB1) and Bcl2. The levels of these two proteins were preserved in the cells that were co-treated with oxLDL and the 4-PBA. Consistent with this result we found that blockade of ER stress activation alleviated the loss of insulin synthesis and abolished apoptosis evoked by oxLDL. However incubation of the cells with 4-PBA did not prevent impairment of insulin secretion elicited by oxLDL, indicating that ER stress is not responsible for the oxLDL-mediated defect of insulin secretion. Co-incubation of the cells with HDL mimicked the effects of 4-PBA on the expression of IB1 and Blc2 and thereby counteracted oxLDL attacks on insulin synthesis and cell survivals. We found that HDL efficiently inhibited activation of the ER stress mediated by oxLDL: These data highlight the contribution of the ER stress in the defects of insulin synthesis and cell survivals induced by oxLDL and emphasize the potent role of HDL to counter activation of the oxLDL-mediated ER-stress activation:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) is a pro-inflammatory cytokine exerting pleiotropic effects on endothelial cells. Depending on the vascular context it can induce endothelial cell activation and survival or death. The microenvironmental cues determining whether endothelial cells will survive or die, however, have remained elusive. Here we report that integrin ligation acts permissive for TNF-induced protein kinase B (PKB/Akt) but not nuclear factor (NF)-kappaB activation. Concomitant activation of PKB/Akt and NF-kappaB is essential for the survival of endothelial cells exposed to TNF. Active PKB/Akt strengthens integrin-dependent endothelial cell adhesion, whereas disruption of actin stress fibers abolishes the protective effect of PKB/Akt. Integrin-mediated adhesion also represses TNF-induced JNK activation, but JNK activity is not required for cell death. The alphaVbeta3/alphaVbeta5 integrin inhibitor EMD121974 sensitizes endothelial cells to TNF-dependent cytotoxicity and active PKB/Akt attenuates this effect. Interferon gamma synergistically enhanced TNF-induced endothelial cell death in all conditions tested. Taken together, these observations reveal a novel permissive role for integrins in TNF-induced PKB/Akt activation and prevention of TNF-induced death distinct of NF-kappaB, and implicate the actin cytoskeleton in PKB/Akt-mediated cell survival. The sensitizing effect of EMD121974 on TNF cytotoxicity may open new perspectives to the therapeutic use of TNF as anticancer agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction and aims. During last few decades, the prevalence of obesity, metabolic syndrome and insulin resistance, among other metabolic disturbances, has raised considerably in many countries worldwide. Environmental factors (diet, physical activity), in tandem with predisposing genetic factors, may be responsible for this trend. Along with an increase in total energy consumption during recent decades, there has also been a shift in the type of nutrients, with an increased consumption of fructose, largely attributable to a greater intake of beverages containing high levels of fructose...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction and aims. During last few decades, the prevalence of obesity, metabolic syndrome and insulin resistance, among other metabolic disturbances, has raised considerably in many countries worldwide. Environmental factors (diet, physical activity), in tandem with predisposing genetic factors, may be responsible for this trend. Along with an increase in total energy consumption during recent decades, there has also been a shift in the type of nutrients, with an increased consumption of fructose, largely attributable to a greater intake of beverages containing high levels of fructose...