819 resultados para e-learning systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Web 2.0 und soziale Netzwerke gaben erste Impulse für neue Formen der Online-Lehre, welche die umfassende Vernetzung von Objekten und Nutzern im Internet nachhaltig einsetzen. Die Vielfältigkeit der unterschiedlichen Systeme erschwert aber deren ganzheitliche Nutzung in einem umfassenden Lernszenario, das den Anforderungen der modernen Informationsgesellschaft genügt. In diesem Beitrag wird eine auf dem Konnektivismus basierende Plattform für die Online-Lehre namens “Wiki-Learnia” präsentiert, welche alle wesentlichen Abschnitte des lebenslangen Lernens abbildet. Unter Einsatz zeitgemäßer Technologien werden nicht nur Nutzer untereinander verbunden, sondern auch Nutzer mit dedizierten Inhalten sowie ggf. zugehörigen Autoren und/oder Tutoren verknüpft. Für ersteres werden verschiedene Kommunikations-Werkzeuge des Web 2.0 (soziale Netzwerke, Chats, Foren etc.) eingesetzt. Letzteres fußt auf dem sogenannten “Learning-Hub”-Ansatz, welcher mit Hilfe von Web-3.0-Mechanismen insbesondere durch eine semantische Metasuchmaschine instrumentiert wird. Zum Aufzeigen der praktischen Relevanz des Ansatzes wird das mediengestützte Juniorstudium der Universität Rostock vorgestellt, ein Projekt, das Schüler der Abiturstufe aufs Studium vorbereitet. Anhand der speziellen Anforderungen dieses Vorhabens werden der enorme Funktionsumfang und die große Flexibilität von Wiki-Learnia demonstriert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Der Beitrag fokussiert die Entwicklung, den Einsatz und die Nutzung von innovativen Technologien zur Unterstützung von Bildungsszenarien in Schule, Hochschule und Weiterbildung. Ausgehend von den verschiedenen Phasen des Corporate Learning, Social Learning, Mobile Learning und Intelligent Learning wird in einem ersten Abschnitt das Nutzungsverhalten von Technologien durch Kinder, Jugendliche und (junge) Erwachsene in Schule, Studium und Lehre betrachtet. Es folgt die Darstellung technologischer Entwicklungen auf Basis des Technology Life Cycle und die Konsequenzen von unterschiedlichen Entwicklungszuständen und Reifegraden von Technologien wie Content Learning Management, sozialen Netzwerken, mobilen Endgeräten, multidimensionalen und -modalen Räumen bis hin zu Anwendungen augmentierter Realität und des Internets der Dinge, Dienste und Daten für den Einsatz und die Nutzung in Bildungsszenarien. Nach der Darstellung von Anforderungen an digitale Technologien hinsichtlich Inhalte, Didaktik und Methodik wie etwa hinsichtlich der Erstellung von Inhalten, deren Wiederverwendung, Digitalisierung und Auffindbarkeit sowie Standards werden methodische Hinweise zur Nutzung digitaler Technologien zur Interaktion von Lernenden, von Lehrenden, sozialer Interaktion, kollaborativem Autorieren, Kommentierung, Evaluation und Begutachtung gegeben. Abschließend werden - differenziert für Schule und Hochschule - Erkenntnisse zu Rahmenbedingungen, Einflussgrößen, hemmenden und fördernden Faktoren sowie Herausförderungen bei der Einführung und nachhaltigen Implementation digitaler Technologien im schulischen Unterricht, in Lehre, Studium und Weiterbildung im Überblick zusammengefasst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Das heutige Leben der Menschen ist vom Internet durchdrungen, kaum etwas ist nicht „vernetzt“ oder „elektronisch verfügbar“. Die Welt befindet sich im Wandel, die „Informationsgesellschaft“ konsumiert in Echtzeit Informationen auf mobilen Endgeräten, unabhängig von Zeit und Ort. Dies gilt teilweise auch für den Aus- und Weiterbildungssektor: Unter „E-Learning“ versteht man die elektronische Unterstützung des Lernens. Gelernt wird „online“; Inhalte sind digital verfügbar. Zudem hat sich die Lebenssituation der sogenannten „Digital Natives“, der jungen Individuen in der Informationsgesellschaft, verändert. Sie fordern zeitlich und räumlich flexible Ausbildungssysteme, erwarten von Bildungsinstitutionen umfassende digitale Verfügbarkeit von Informationen und möchten ihr Leben nicht mehr Lehr- und Zeitplänen unterordnen – das Lernen soll zum eigenen Leben passen, lebensbegleitend stattfinden. Neue „Lernszenarien“, z.B. für alleinerziehende Teilzeitstudierende oder Berufstätige, sollen problemlos möglich werden. Dies soll ein von der europäischen Union erarbeitetes Paradigma leisten, das unter dem Terminus „Lebenslanges Lernen“ zusammengefasst ist. Sowohl E-Learning, als auch Lebenslanges Lernen gewinnen an Bedeutung, denn die (deutsche) Wirtschaft thematisiert den „Fachkräftemangel“. Die Nachfrage nach speziell ausgebildeten Ingenieuren im MINT-Bereich soll schnellstmöglich befriedigt, die „Mitarbeiterlücke“ geschlossen werden, um so weiterhin das Wachstum und den Wohlstand zu sichern. Spezielle E-Learning-Lösungen für den MINT-Bereich haben das Potential, eine schnelle sowie flexible Aus- und Weiterbildung für Ingenieure zu bieten, in der Fachwissen bezogen auf konkrete Anforderungen der Industrie vermittelt wird. Momentan gibt es solche Systeme allerdings noch nicht. Wie sehen die Anforderungen im MINT-Bereich an eine solche E-Learning-Anwendung aus? Sie muss neben neuen Technologien vor allem den funktionalen Anforderungen des MINTBereichs, den verschiedenen Zielgruppen (wie z.B. Bildungsinstitutionen, Lerner oder „Digital Natives“, Industrie) und dem Paradigma des Lebenslangen Lernens gerecht werden, d.h. technische und konzeptuelle Anforderungen zusammenführen. Vor diesem Hintergrund legt die vorliegende Arbeit ein Rahmenwerk für die Erstellung einer solchen Lösung vor. Die praktischen Ergebnisse beruhen auf dem Blended E-Learning-System des Projekts „Technische Informatik Online“ (VHN-TIO).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individual learning is central to the success of the transition phase in software mainte-nance offshoring projects. However, little is known on how learning activities, such as on-the-job training and formal presentations, are effectively combined during the tran-sition phase. In this study, we present and test propositions derived from cognitive load theory. The results of a multiple-case study suggest that learning effectiveness was highest when learning tasks such as authentic maintenance requests were used. Con-sistent with cognitive load theory, learning tasks were most effective when they imposed moderate cognitive load. Our data indicate that cognitive load was influenced by the expertise of the onsite coordinator, by intrinsic task complexity, by the degree of specifi-cation of tasks, and by supportive information. Cultural and semantic distances may in-fluence learning by inhibiting supportive information, specification, and the assignment of learning tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Population coding is widely regarded as a key mechanism for achieving reliable behavioral decisions. We previously introduced reinforcement learning for population-based decision making by spiking neurons. Here we generalize population reinforcement learning to spike-based plasticity rules that take account of the postsynaptic neural code. We consider spike/no-spike, spike count and spike latency codes. The multi-valued and continuous-valued features in the postsynaptic code allow for a generalization of binary decision making to multi-valued decision making and continuous-valued action selection. We show that code-specific learning rules speed up learning both for the discrete classification and the continuous regression tasks. The suggested learning rules also speed up with increasing population size as opposed to standard reinforcement learning rules. Continuous action selection is further shown to explain realistic learning speeds in the Morris water maze. Finally, we introduce the concept of action perturbation as opposed to the classical weight- or node-perturbation as an exploration mechanism underlying reinforcement learning. Exploration in the action space greatly increases the speed of learning as compared to exploration in the neuron or weight space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES Evidence increases that cognitive failure may be used to screen for drivers at risk. Until now, most studies have relied on driving learners. This exploratory pilot study examines self-report of cognitive failure in driving beginners and error during real driving as observed by driving instructors. METHODS Forty-two driving learners of 14 driving instructors filled out a work-related cognitive failure questionnaire. Driving instructors observed driving errors during the next driving lesson. In multiple linear regression analysis, driving errors were regressed on cognitive failure with the number of driving lessons as an estimator of driving experience controlled. RESULTS Higher cognitive failure predicted more driving errors (p < .01) when age, gender and driving experience were controlled in analysis. CONCLUSIONS Cognitive failure was significantly associated with observed driving errors. Systematic research on cognitive failure in driving beginners is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Competing water demands for household consumption as well as the production of food, energy, and other uses pose challenges for water supply and sustainable development in many parts of the world. Designing creative strategies and learning processes for sustainable water governance is thus of prime importance. While this need is uncontested, suitable approaches still have to be found. In this article we present and evaluate a conceptual approach to scenario building aimed at transdisciplinary learning for sustainable water governance. The approach combines normative, explorative, and participatory scenario elements. This combination allows for adequate consideration of stakeholders’ and scientists’ systems, target, and transformation knowledge. Application of the approach in the MontanAqua project in the Swiss Alps confirmed its high potential for co-producing new knowledge and establishing a meaningful and deliberative dialogue between all actors involved. The iterative and combined approach ensured that stakeholders’ knowledge was adequately captured, fed into scientific analysis, and brought back to stakeholders in several cycles, thereby facilitating learning and co-production of new knowledge relevant for both stakeholders and scientists. However, the approach also revealed a number of constraints, including the enormous flexibility required of stakeholders and scientists in order for them to truly engage in the co-production of new knowledge. Overall, the study showed that shifts from strategic to communicative action are possible in an environment of mutual trust. This ultimately depends on creating conditions of interaction that place scientists’ and stakeholders’ knowledge on an equal footing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Food and Drug Administration (FDA) is responsible for risk assessment and risk management in the post-market surveillance of the U.S. medical device industry. One of the FDA regulatory mechanisms, the Medical Device Reporting System (MDR) is an adverse event reporting system intended to provide the FDA with advance warning of device problems. It includes voluntary reporting for individuals, and mandatory reporting for device manufacturers. ^ In a study of alleged breast implant safety problems, this research examines the organizational processes by which the FDA gathers data on adverse events and uses adverse event reporting systems to assess and manage risk. The research reviews the literature on problem recognition, risk perception, and organizational learning to understand the influence highly publicized events may have on adverse event reporting. Understanding the influence of an environmental factor, such as publicity, on adverse event reporting can provide insight into the question of whether the FDA's adverse event reporting system operates as an early warning system for medical device problems. ^ The research focuses on two main questions. The first question addresses the relationship between publicity and the voluntary and mandatory reporting of adverse events. The second question examines whether government agencies make use of these adverse event reports. ^ Using quantitative and qualitative methods, a longitudinal study was conducted of the number and content of adverse event reports regarding breast implants filed with the FDA's medical device reporting system during 1985–1991. To assess variation in publicity over time, the print media were analyzed to identify articles related to breast implant failures. ^ The exploratory findings suggest that an increase in media activity is related to an increase in voluntary reporting, especially following periods of intense media coverage of the FDA. However, a similar relationship was not found between media activity and manufacturers' mandatory adverse event reporting. A review of government committee and agency reports on the FDA published during 1976–1996 produced little evidence to suggest that publicity or MDR information contributed to problem recognition, agenda setting, or the formulation of policy recommendations. ^ The research findings suggest that the reporting of breast implant problems to FDA may reflect the perceptions and concerns of the reporting groups, a barometer of the volume and content of media attention. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses an investigation with machine learning (ML) classification techniques to assist in the problem of flash flood now casting. We have been attempting to build a Wireless Sensor Network (WSN) to collect measurements from a river located in an urban area. The machine learning classification methods were investigated with the aim of allowing flash flood now casting, which in turn allows the WSN to give alerts to the local population. We have evaluated several types of ML taking account of the different now casting stages (i.e. Number of future time steps to forecast). We have also evaluated different data representation to be used as input of the ML techniques. The results show that different data representation can lead to results significantly better for different stages of now casting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contribution of this article demonstrates how to identify context-aware types of e-Learning objects (eLOs) derived from the subject domains. This perspective is taken from an engineering point of view and is applied during requirements elicitation and analysis relating to present work in constructing an object-oriented (OO), dynamic, and adaptive model to build and deliver packaged e-Learning courses. Consequently, three preliminary subject domains are presented and, as a result, three primitive types of eLOs are posited. These types educed from the subject domains are of structural, conceptual, and granular nature. Structural objects are responsible for the course itself, conceptual objects incorporate adaptive and logical interoperability, while granular objects congregate granular assets. Their differences, interrelationships, and responsibilities are discussed. A major design challenge relates to adaptive behaviour. Future research addresses refinement on the subject domains and adaptive hypermedia systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Libraries of learning objects may serve as basis for deriving course offerings that are customized to the needs of different learning communities or even individuals. Several ways of organizing this course composition process are discussed. Course composition needs a clear understanding of the dependencies between the learning objects. Therefore we discuss the metadata for object relationships proposed in different standardization projects and especially those suggested in the Dublin Core Metadata Initiative. Based on these metadata we construct adjacency matrices and graphs. We show how Gozinto-type computations can be used to determine direct and indirect prerequisites for certain learning objects. The metadata may also be used to define integer programming models which can be applied to support the instructor in formulating his specifications for selecting objects or which allow a computer agent to automatically select learning objects. Such decision models could also be helpful for a learner navigating through a library of learning objects. We also sketch a graph-based procedure for manual or automatic sequencing of the learning objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specification consortia and standardization bodies concentrate on e-Learning objects to en-sure reusability of content. Learning objects may be collected in a library and used for deriv-ing course offerings that are customized to the needs of different learning communities. How-ever, customization of courses is possible only if the logical dependencies between the learn-ing objects are known. Metadata for describing object relationships have been proposed in several e-Learning specifications. This paper discusses the customization potential of e-Learning objects but also the pitfalls that exist if content is customized inappropriately.