979 resultados para controlling mass fuzzy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High bone mass (HBM) can be an incidental clinical finding; however, monogenic HBM disorders (eg, LRP5 or SOST mutations) are rare. We aimed to determine to what extent HBM is explained by mutations in known HBM genes. A total of 258 unrelated HBM cases were identified from a review of 335,115 DXA scans from 13 UK centers. Cases were assessed clinically and underwent sequencing of known anabolic HBM loci: LRP5 (exons 2, 3, 4), LRP4 (exons 25, 26), SOST (exons 1, 2, and the van Buchem's disease [VBD] 52-kb intronic deletion 3'). Family members were assessed for HBM segregation with identified variants. Three-dimensional protein models were constructed for identified variants. Two novel missense LRP5 HBM mutations ([c.518C>T; p.Thr173Met], [c.796C>T; p.Arg266Cys]) were identified, plus three previously reported missense LRP5 mutations ([c.593A>G; p.Asn198Ser], [c.724G>A; p.Ala242Thr], [c.266A>G; p.Gln89Arg]), associated with HBM in 11 adults from seven families. Individuals with LRP5 HBM ( approximately prevalence 5/100,000) displayed a variable phenotype of skeletal dysplasia with increased trabecular BMD and cortical thickness on HRpQCT, and gynoid fat mass accumulation on DXA, compared with both non-LRP5 HBM and controls. One mostly asymptomatic woman carried a novel heterozygous nonsense SOST mutation (c.530C>A; p.Ser177X) predicted to prematurely truncate sclerostin. Protein modeling suggests the severity of the LRP5-HBM phenotype corresponds to the degree of protein disruption and the consequent effect on SOST-LRP5 binding. We predict p.Asn198Ser and p.Ala242Thr directly disrupt SOST binding; both correspond to severe HBM phenotypes (BMD Z-scores +3.1 to +12.2, inability to float). Less disruptive structural alterations predicted from p.Arg266Cys, p.Thr173Met, and p.Gln89Arg were associated with less severe phenotypes (Z-scores +2.4 to +6.2, ability to float). In conclusion, although mutations in known HBM loci may be asymptomatic, they only account for a very small proportion ( approximately 3%) of HBM individuals, suggesting the great majority are explained by either unknown monogenic causes or polygenic inheritance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model is developed to simulate oxygen consumption, heat generation and cell growth in solid state fermentation (SSF). The fungal growth on the solid substrate particles results in the increase of the cell film thickness around the particles. The model incorporates this increase in the biofilm size which leads to decrease in the porosity of the substrate bed and diffusivity of oxygen in the bed. The model also takes into account the effect of steric hindrance limitations in SSF. The growth of cells around single particle and resulting expansion of biofilm around the particle is analyzed for simplified zero and first order oxygen consumption kinetics. Under conditions of zero order kinetics, the model predicts upper limit on cell density. The model simulations for packed bed of solid particles in tray bioreactor show distinct limitations on growth due to simultaneous heat and mass transport phenomena accompanying solid state fermentation process. The extent of limitation due to heat and/or mass transport phenomena is analyzed during different stages of fermentation. It is expected that the model will lead to better understanding of the transport processes in SSF, and therefore, will assist in optimal design of bioreactors for SSF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural peptide libraries often contain cyclodepsipeptides containing alpha or beta hydroxy residues. Extracts of fungal hyphae of Isaria yield a microheterogenous cyclodepsipeptide mixture in which two classes of molecules can be identified by mass spectral fragmentation of negative ions. In the case of isaridins, which contain an alpha-hydroxy residue and a beta-amino acid residue, a characteristic product ion corresponding to a neutral loss of 72 Da is obtained. hi addition, neutral loss of water followed by a 72 Da loss is also observed. Two distinct modes of fragmentation rationalize the observed product ion distribution. The neutral loss of 72 Da has also been obtained for a roseotoxin component, which is also an alpha-hydroxy residue containing cyclodepsipeptide. In the case of isariins, which contain a beta-hydroxy acid residue, ring opening and subsequent loss of the terminal residue as an unsaturated ketene fragment, rationalizes the observed product ion formation. Fragmentation of negative ions provide characteristic neutral losses, which are diagnostic of the presence of alpha-hydroxy or beta-hydroxy residues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuzzy Waste Load Allocation Model (FWLAM), developed in an earlier study, derives the optimal fractional levels, for the base flow conditions, considering the goals of the Pollution Control Agency (PCA) and dischargers. The Modified Fuzzy Waste Load Allocation Model (MFWLAM) developed subsequently is a stochastic model and considers the moments (mean, variance and skewness) of water quality indicators, incorporating uncertainty due to randomness of input variables along with uncertainty due to imprecision. The risk of low water quality is reduced significantly by using this modified model, but inclusion of new constraints leads to a low value of acceptability level, A, interpreted as the maximized minimum satisfaction in the system. To improve this value, a new model, which is a combination Of FWLAM and MFWLAM, is presented, allowing for some violations in the constraints of MFWLAM. This combined model is a multiobjective optimization model having the objectives, maximization of acceptability level and minimization of violation of constraints. Fuzzy multiobjective programming, goal programming and fuzzy goal programming are used to find the solutions. For the optimization model, Probabilistic Global Search Lausanne (PGSL) is used as a nonlinear optimization tool. The methodology is applied to a case study of the Tunga-Bhadra river system in south India. The model results in a compromised solution of a higher value of acceptability level as compared to MFWLAM, with a satisfactory value of risk. Thus the goal of risk minimization is achieved with a comparatively better value of acceptability level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoporous carbon (NPC) materials with high specific surface area have attracted considerable attention for electrochemical energy storage applications. In the present work, we have designed novel symmetric supercapacitors based on NPC by direct carbonization of Zn-based metal-organic frameworks (MOFs) without using an additional precursor. By controlling the reaction conditions in the present study, we synthesized NPC with two different particle sizes. The effects of particle size and mass loadings on supercapacitor performance have been carefully evaluated. Our NPC materials exhibit excellent electrochemical performance with a maximum specific capacitance of 251 F g-1 in 1 M H2SO4 electrolyte. The symmetric supercapacitor studies show that these efficient electrodes have good capacitance, high stability, and good rate capability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlling the morphological structure of titanium dioxide (TiO 2) is crucial for obtaining superior power conversion efficiency for dye-sensitized solar cells. Although the sol-gel-based process has been developed for this purpose, there has been limited success in resisting the aggregation of nanostructured TiO2, which could act as an obstacle for mass production. Herein, we report a simple approach to improve the efficiency of dye-sensitized solar cells (DSSC) by controlling the degree of aggregation and particle surface charge through zeta potential analysis. We found that different aqueous colloidal conditions, i.e., potential of hydrogen (pH), water/titanium alkoxide (titanium isopropoxide) ratio, and surface charge, obviously led to different particle sizes in the range of 10-500 nm. We have also shown that particles prepared under acidic conditions are more effective for DSSC application regarding the modification of surface charges to improve dye loading and electron injection rate properties. Power conversion efficiency of 6.54%, open-circuit voltage of 0.73 V, short-circuit current density of 15.32 mA/cm2, and fill factor of 0.73 were obtained using anatase TiO 2 optimized to 10-20 nm in size, as well as by the use of a compact TiO2 blocking layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study deals with the application of cluster analysis, Fuzzy Cluster Analysis (FCA) and Kohonen Artificial Neural Networks (KANN) methods for classification of 159 meteorological stations in India into meteorologically homogeneous groups. Eight parameters, namely latitude, longitude, elevation, average temperature, humidity, wind speed, sunshine hours and solar radiation, are considered as the classification criteria for grouping. The optimal number of groups is determined as 14 based on the Davies-Bouldin index approach. It is observed that the FCA approach performed better than the other two methodologies for the present study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pediatric renal transplantation (TX) has evolved greatly during the past few decades, and today TX is considered the standard care for children with end-stage renal disease. In Finland, 191 children had received renal transplants by October 2007, and 42% of them have already reached adulthood. Improvements in treatment of end-stage renal disease, surgical techniques, intensive care medicine, and in immunosuppressive therapy have paved the way to the current highly successful outcomes of pediatric transplantation. In children, the transplanted graft should last for decades, and normal growth and development should be guaranteed. These objectives set considerable requirements in optimizing and fine-tuning the post-operative therapy. Careful optimization of immunosuppressive therapy is crucial in protecting the graft against rejection, but also in protecting the patient against adverse effects of the medication. In the present study, the results of a retrospective investigation into individualized dosing of immunosuppresive medication, based on pharmacokinetic profiles, therapeutic drug monitoring, graft function and histology studies, and glucocorticoid biological activity determinations, are reported. Subgroups of a total of 178 patients, who received renal transplants in 1988 2006 were included in the study. The mean age at TX was 6.5 years, and approximately 26% of the patients were <2 years of age. The most common diagnosis leading to renal TX was congenital nephrosis of the Finnish type (NPHS1). Pediatric patients in Finland receive standard triple immunosuppression consisting of cyclosporine A (CsA), methylprednisolone (MP) and azathioprine (AZA) after renal TX. Optimal dosing of these agents is important to prevent rejections and preserve graft function in one hand, and to avoid the potentially serious adverse effects on the other hand. CsA has a narrow therapeutic window and individually variable pharmacokinetics. Therapeutic monitoring of CsA is, therefore, mandatory. Traditionally, CsA monitoring has been based on pre-dose trough levels (C0), but recent pharmacokinetic and clinical studies have revealed that the immunosuppressive effect may be related to diurnal CsA exposure and blood CsA concentration 0-4 hours after dosing. The two-hour post-dose concentration (C2) has proved a reliable surrogate marker of CsA exposure. Individual starting doses of CsA were analyzed in 65 patients. A recommended dose based on a pre-TX pharmacokinetic study was calculated for each patient by the pre-TX protocol. The predicted dose was clearly higher in the youngest children than in the older ones (22.9±10.4 and 10.5±5.1 mg/kg/d in patients <2 and >8 years of age, respectively). The actually administered oral doses of CsA were collected for three weeks after TX and compared to the pharmacokinetically predicted dose. After the TX, dosing of CsA was adjusted according to clinical parameters and blood CsA trough concentration. The pharmacokinetically predicted dose and patient age were the two significant parameters explaining post-TX doses of CsA. Accordingly, young children received significantly higher oral doses of CsA than the older ones. The correlation to the actually administered doses after TX was best in those patients, who had a predicted dose clearly higher or lower (> ±25%) than the average in their age-group. Due to the great individual variation in pharmacokinetics standardized dosing of CsA (based on body mass or surface area) may not be adequate. Pre-Tx profiles are helpful in determining suitable initial CsA doses. CsA monitoring based on trough and C2 concentrations was analyzed in 47 patients, who received renal transplants in 2001 2006. C0, C2 and experienced acute rejections were collected during the post-TX hospitalization, and also three months after TX when the first protocol core biopsy was obtained. The patients who remained rejection free had slightly higher C2 concentrations, especially very early after TX. However, after the first two weeks also the trough level was higher in the rejection-free patients than in those with acute rejections. Three months after TX the trough level was higher in patients with normal histology than in those with rejection changes in the routine biopsy. Monitoring of both the trough level and C2 may thus be warranted to guarantee sufficient peak concentration and baseline immunosuppression on one hand and to avoid over-exposure on the other hand. Controlling of rejection in the early months after transplantation is crucial as it may contribute to the development of long-term allograft nephropathy. Recently, it has become evident that immunoactivation fulfilling the histological criteria of acute rejection is possible in a well functioning graft with no clinical sings or laboratory perturbations. The influence of treatment of subclinical rejection, diagnosed in 3-month protocol biopsy, to graft function and histology 18 months after TX was analyzed in 22 patients and compared to 35 historical control patients. The incidence of subclinical rejection at three months was 43%, and the patients received a standard rejection treatment (a course of increased MP) and/or increased baseline immunosuppression, depending on the severity of rejection and graft function. Glomerular filtration rate (GFR) at 18 months was significantly better in the patients who were screened and treated for subclinical rejection in comparison to the historical patients (86.7±22.5 vs. 67.9±31.9 ml/min/1.73m2, respectively). The improvement was most remarkable in the youngest (<2 years) age group (94.1±11.0 vs. 67.9±26.8 ml/min/1.73m2). Histological findings of chronic allograft nephropathy were also more common in the historical patients in the 18-month protocol biopsy. All pediatric renal TX patients receive MP as a part of the baseline immunosuppression. Although the maintenance dose of MP is very low in the majority of the patients, the well-known steroid-related adverse affects are not uncommon. It has been shown in a previous study in Finnish pediatric TX patients that steroid exposure, measured as area under concentration-time curve (AUC), rather than the dose correlates with the adverse effects. In the present study, MP AUC was measured in sixteen stable maintenance patients, and a correlation with excess weight gain during 12 months after TX as well as with height deficit was found. A novel bioassay measuring the activation of glucocorticoid receptor dependent transcription cascade was also employed to assess the biological effect of MP. Glucocorticoid bioactivity was found to be related to the adverse effects, although the relationship was not as apparent as that with serum MP concentration. The findings in this study support individualized monitoring and adjustment of immunosuppression based on pharmacokinetics, graft function and histology. Pharmacokinetic profiles are helpful in estimating drug exposure and thus identifying the patients who might be at risk for excessive or insufficient immunosuppression. Individualized doses and monitoring of blood concentrations should definitely be employed with CsA, but possibly also with steroids. As an alternative to complete steroid withdrawal, individualized dosing based on drug exposure monitoring might help in avoiding the adverse effects. Early screening and treatment of subclinical immunoactivation is beneficial as it improves the prospects of good long-term graft function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static analysis and forward flight. The simulated measurements are obtained using an aeroelastic analysis of the composite rotor blade based on the finite element in space and time with physics-based damage modes that are then linked to the life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption using displacement- and force-based measurement deviations between damaged and undamaged conditions. Furthermore, local online prediction of physical damage and life consumption is done using strains measured along the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12-15% and life consumption in debonding/delamination zone is about 45-55% of the total life of the blade. It is also observed that the success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended for online structural health monitoring of composite helicopter rotor blades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive Pulsed Laser Deposition is a single step process wherein the ablated elemental metal reacts with a low pressure ambient gas to form a compound. We report here a Secondary Ion Mass Spectrometry based analytical methodology to conduct minimum number of experiments to arrive at optimal process parameters to obtain high quality TiN thin film. Quality of these films was confirmed by electron microscopic analysis. This methodology can be extended for optimization of other process parameters and materials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Glutathionyl haemoglobin (GS-Hb) belonging to the class of glutathionylated proteins has been investigated as a possible marker of oxidative stress in different chronic diseases. The purpose of this study was to examine whether glutathionyl haemoglobin can serve as an oxidative stress marker in non-diabetic chronic renal failure patients on different renal replacement therapies (RRT) through its quantitation, and characterization of the specific binding site of glutathione in haemoglobin molecule by mass spectrometric analysis. Design and methods: The study group consisted of non-diabetic chronic renal failure patients on renal replacement therapy (RRT): hemodialysis (HD), continuous ambulatory peritoneal dialysis (CAPD) and renal allograft transplant (Txp) patients. Haemoglobin samples of these subjects were analyzed by liquid chromatography electrospray ionization mass spectrometry for GS-Hb quantitation. Characterization of GS-Hb was done by tandem mass spectrometry. Levels of erythrocyte glutathione (GSH) and lipid peroxidation (as thiobarbituric acid reacting substances) were measured spectrophotometrically, while glycated baernoglobin (HbA1c) was measured by HPLC. Results: GS-Hb levels were markedly elevated in the dialysis group and marginally in the transplant group as compared to the controls. GS-Hb levels correlated positively with lipid peroxidation and negatively with the erythrocyte glutathione levels in RRT groups indicating enhanced oxidative stress. De novo sequencing of the chymotryptic fragment of GS-Hb established that glutathione is attached to Cys-93 of the beta globin chain. Mass spectrometric quantitation of total glycated haemoglobin showed good agreement with HbA1c estimation by conventional HPLC method. Conclusions: Glutathionyl haemoglobin can serve as a clinical marker of oxidative stress in chronic debilitating therapies like RRT. Mass spectrometry provides a reliable analytical tool for quantitation and residue level characterization of different post-translational modifications of haemoglobin. (c) 2007 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium smegmatis is known to form biofilms and many cell surface molecules like core glycopeptidolipids and short-chain mycolates appear to play important role in the process. However, the involvement of the cell surface molecules in mycobacteria towards complete maturation of biofilms is still not clear. This work demonstrates the importance of the glycopeptidolipid species with hydroxylated alkyl chain and the epoxylated mycolic acids, during the process of biofilm development. In our previous study, we reported the impairment of biofilm formation in rpoZ-deleted M. smegmatis, where rpoZ codes for the ω subunit of RNA polymerase (R. Mathew, R. Mukherjee, R. Balachandar, D. Chatterji, Microbiology 152 (2006) 1741). Here we report the occurrence of planktonic growth in a mc2155 strain which is devoid of rpoZ gene. This strain is deficient in selective incorporation of the hydroxylated glycopeptidolipids and the epoxy mycolates to their respective locations in the cell wall. Hence it forms a mutant biofilm defective in maturation, wherein the cells undertake various alternative metabolic pathways to survive in an environment where oxygen, the terminal electron acceptor, is limiting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow cover is very sensitive to climate change and has a large feedback effect on the climate system due to the high albedo. Snow covers almost all surfaces in Antarctica and small changes in snow properties can mean large changes in absorbed radiation. In the ongoing discussion of climatic change, the mass balance of Antarctica has received increasing focus during recent decades, since its reaction to global warming strongly influences sea-level change. The aim of the present work was to examine the spatial and temporal variations in the physical and chemical characteristics of surface snow and annual accumulation rates in western Dronning Maud Land, Antarctica. The data were collected along a 350-km-long transect from the coast to the plateau during the years 1999-2004 as a part of the Finnish Antarctic Research Programme (FINNARP). The research focused on the most recent annual accumulation in the coastal area. The results show that the distance from the sea, and the moisture source, was the most predominant factor controlling the variations in both physical (conductivity, grain size, oxygen isotope ratio and accumulation) and chemical snow properties. The sea-salt and sulphur-containing components predominated in the coastal region. The local influences of nunataks and topographic highs were also visible on snow. The variations in all measured properties were wide within single sites mostly due to redistribution by winds and sastrugi topography, which reveals the importance of the spatially representative measurements. The mean accumulations occurred on the ice shelf, in the coastal region and on the plateau: 312 ± 28, 215 ± 43 and 92 ± 25 mm w.e., respectively. Depth hoar layers were usually found under the thin ice crust and were associated with a low dielectric constant and high concentrations of nitrate. Taking into account the vast size of the Antarctic ice sheet and its geographic characteristics, it is important to extend investigation of the distribution of surface snow properties and accumulation to provide well-documented data.