886 resultados para context assessment
Resumo:
X-ray computed tomography (CT) imaging constitutes one of the most widely used diagnostic tools in radiology today with nearly 85 million CT examinations performed in the U.S in 2011. CT imparts a relatively high amount of radiation dose to the patient compared to other x-ray imaging modalities and as a result of this fact, coupled with its popularity, CT is currently the single largest source of medical radiation exposure to the U.S. population. For this reason, there is a critical need to optimize CT examinations such that the dose is minimized while the quality of the CT images is not degraded. This optimization can be difficult to achieve due to the relationship between dose and image quality. All things being held equal, reducing the dose degrades image quality and can impact the diagnostic value of the CT examination.
A recent push from the medical and scientific community towards using lower doses has spawned new dose reduction technologies such as automatic exposure control (i.e., tube current modulation) and iterative reconstruction algorithms. In theory, these technologies could allow for scanning at reduced doses while maintaining the image quality of the exam at an acceptable level. Therefore, there is a scientific need to establish the dose reduction potential of these new technologies in an objective and rigorous manner. Establishing these dose reduction potentials requires precise and clinically relevant metrics of CT image quality, as well as practical and efficient methodologies to measure such metrics on real CT systems. The currently established methodologies for assessing CT image quality are not appropriate to assess modern CT scanners that have implemented those aforementioned dose reduction technologies.
Thus the purpose of this doctoral project was to develop, assess, and implement new phantoms, image quality metrics, analysis techniques, and modeling tools that are appropriate for image quality assessment of modern clinical CT systems. The project developed image quality assessment methods in the context of three distinct paradigms, (a) uniform phantoms, (b) textured phantoms, and (c) clinical images.
The work in this dissertation used the “task-based” definition of image quality. That is, image quality was broadly defined as the effectiveness by which an image can be used for its intended task. Under this definition, any assessment of image quality requires three components: (1) A well defined imaging task (e.g., detection of subtle lesions), (2) an “observer” to perform the task (e.g., a radiologists or a detection algorithm), and (3) a way to measure the observer’s performance in completing the task at hand (e.g., detection sensitivity/specificity).
First, this task-based image quality paradigm was implemented using a novel multi-sized phantom platform (with uniform background) developed specifically to assess modern CT systems (Mercury Phantom, v3.0, Duke University). A comprehensive evaluation was performed on a state-of-the-art CT system (SOMATOM Definition Force, Siemens Healthcare) in terms of noise, resolution, and detectability as a function of patient size, dose, tube energy (i.e., kVp), automatic exposure control, and reconstruction algorithm (i.e., Filtered Back-Projection– FPB vs Advanced Modeled Iterative Reconstruction– ADMIRE). A mathematical observer model (i.e., computer detection algorithm) was implemented and used as the basis of image quality comparisons. It was found that image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose (increase in detectability index by up to 163% depending on iterative strength). The use of automatic exposure control resulted in more consistent image quality with changing phantom size.
Based on those results, the dose reduction potential of ADMIRE was further assessed specifically for the task of detecting small (<=6 mm) low-contrast (<=20 HU) lesions. A new low-contrast detectability phantom (with uniform background) was designed and fabricated using a multi-material 3D printer. The phantom was imaged at multiple dose levels and images were reconstructed with FBP and ADMIRE. Human perception experiments were performed to measure the detection accuracy from FBP and ADMIRE images. It was found that ADMIRE had equivalent performance to FBP at 56% less dose.
Using the same image data as the previous study, a number of different mathematical observer models were implemented to assess which models would result in image quality metrics that best correlated with human detection performance. The models included naïve simple metrics of image quality such as contrast-to-noise ratio (CNR) and more sophisticated observer models such as the non-prewhitening matched filter observer model family and the channelized Hotelling observer model family. It was found that non-prewhitening matched filter observers and the channelized Hotelling observers both correlated strongly with human performance. Conversely, CNR was found to not correlate strongly with human performance, especially when comparing different reconstruction algorithms.
The uniform background phantoms used in the previous studies provided a good first-order approximation of image quality. However, due to their simplicity and due to the complexity of iterative reconstruction algorithms, it is possible that such phantoms are not fully adequate to assess the clinical impact of iterative algorithms because patient images obviously do not have smooth uniform backgrounds. To test this hypothesis, two textured phantoms (classified as gross texture and fine texture) and a uniform phantom of similar size were built and imaged on a SOMATOM Flash scanner (Siemens Healthcare). Images were reconstructed using FBP and a Sinogram Affirmed Iterative Reconstruction (SAFIRE). Using an image subtraction technique, quantum noise was measured in all images of each phantom. It was found that in FBP, the noise was independent of the background (textured vs uniform). However, for SAFIRE, noise increased by up to 44% in the textured phantoms compared to the uniform phantom. As a result, the noise reduction from SAFIRE was found to be up to 66% in the uniform phantom but as low as 29% in the textured phantoms. Based on this result, it clear that further investigation was needed into to understand the impact that background texture has on image quality when iterative reconstruction algorithms are used.
To further investigate this phenomenon with more realistic textures, two anthropomorphic textured phantoms were designed to mimic lung vasculature and fatty soft tissue texture. The phantoms (along with a corresponding uniform phantom) were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Scans were repeated a total of 50 times in order to get ensemble statistics of the noise. A novel method of estimating the noise power spectrum (NPS) from irregularly shaped ROIs was developed. It was found that SAFIRE images had highly locally non-stationary noise patterns with pixels near edges having higher noise than pixels in more uniform regions. Compared to FBP, SAFIRE images had 60% less noise on average in uniform regions for edge pixels, noise was between 20% higher and 40% lower. The noise texture (i.e., NPS) was also highly dependent on the background texture for SAFIRE. Therefore, it was concluded that quantum noise properties in the uniform phantoms are not representative of those in patients for iterative reconstruction algorithms and texture should be considered when assessing image quality of iterative algorithms.
The move beyond just assessing noise properties in textured phantoms towards assessing detectability, a series of new phantoms were designed specifically to measure low-contrast detectability in the presence of background texture. The textures used were optimized to match the texture in the liver regions actual patient CT images using a genetic algorithm. The so called “Clustured Lumpy Background” texture synthesis framework was used to generate the modeled texture. Three textured phantoms and a corresponding uniform phantom were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Images were reconstructed with FBP and SAFIRE and analyzed using a multi-slice channelized Hotelling observer to measure detectability and the dose reduction potential of SAFIRE based on the uniform and textured phantoms. It was found that at the same dose, the improvement in detectability from SAFIRE (compared to FBP) was higher when measured in a uniform phantom compared to textured phantoms.
The final trajectory of this project aimed at developing methods to mathematically model lesions, as a means to help assess image quality directly from patient images. The mathematical modeling framework is first presented. The models describe a lesion’s morphology in terms of size, shape, contrast, and edge profile as an analytical equation. The models can be voxelized and inserted into patient images to create so-called “hybrid” images. These hybrid images can then be used to assess detectability or estimability with the advantage that the ground truth of the lesion morphology and location is known exactly. Based on this framework, a series of liver lesions, lung nodules, and kidney stones were modeled based on images of real lesions. The lesion models were virtually inserted into patient images to create a database of hybrid images to go along with the original database of real lesion images. ROI images from each database were assessed by radiologists in a blinded fashion to determine the realism of the hybrid images. It was found that the radiologists could not readily distinguish between real and virtual lesion images (area under the ROC curve was 0.55). This study provided evidence that the proposed mathematical lesion modeling framework could produce reasonably realistic lesion images.
Based on that result, two studies were conducted which demonstrated the utility of the lesion models. The first study used the modeling framework as a measurement tool to determine how dose and reconstruction algorithm affected the quantitative analysis of liver lesions, lung nodules, and renal stones in terms of their size, shape, attenuation, edge profile, and texture features. The same database of real lesion images used in the previous study was used for this study. That database contained images of the same patient at 2 dose levels (50% and 100%) along with 3 reconstruction algorithms from a GE 750HD CT system (GE Healthcare). The algorithms in question were FBP, Adaptive Statistical Iterative Reconstruction (ASiR), and Model-Based Iterative Reconstruction (MBIR). A total of 23 quantitative features were extracted from the lesions under each condition. It was found that both dose and reconstruction algorithm had a statistically significant effect on the feature measurements. In particular, radiation dose affected five, three, and four of the 23 features (related to lesion size, conspicuity, and pixel-value distribution) for liver lesions, lung nodules, and renal stones, respectively. MBIR significantly affected 9, 11, and 15 of the 23 features (including size, attenuation, and texture features) for liver lesions, lung nodules, and renal stones, respectively. Lesion texture was not significantly affected by radiation dose.
The second study demonstrating the utility of the lesion modeling framework focused on assessing detectability of very low-contrast liver lesions in abdominal imaging. Specifically, detectability was assessed as a function of dose and reconstruction algorithm. As part of a parallel clinical trial, images from 21 patients were collected at 6 dose levels per patient on a SOMATOM Flash scanner. Subtle liver lesion models (contrast = -15 HU) were inserted into the raw projection data from the patient scans. The projections were then reconstructed with FBP and SAFIRE (strength 5). Also, lesion-less images were reconstructed. Noise, contrast, CNR, and detectability index of an observer model (non-prewhitening matched filter) were assessed. It was found that SAFIRE reduced noise by 52%, reduced contrast by 12%, increased CNR by 87%. and increased detectability index by 65% compared to FBP. Further, a 2AFC human perception experiment was performed to assess the dose reduction potential of SAFIRE, which was found to be 22% compared to the standard of care dose.
In conclusion, this dissertation provides to the scientific community a series of new methodologies, phantoms, analysis techniques, and modeling tools that can be used to rigorously assess image quality from modern CT systems. Specifically, methods to properly evaluate iterative reconstruction have been developed and are expected to aid in the safe clinical implementation of dose reduction technologies.
Resumo:
This doctoral study examines assessment in primary education in the Republic of Ireland. The nature and purpose of assessment offer an insight into the values which are prioritised by an education system. In 2011, in the Republic of Ireland, the Department of Education and Skills (DES) published a strategy aiming to improve standards of literacy and numeracy. The document, entitled, Literacy and numeracy for learning and life: the national strategy to improve literacy and numeracy for children and young people 2011-2020, contains improvement targets as measured by standardised tests. It also mandates the increased use of standardised tests in primary education, and directs that aggregated scores should be reported to both Boards of Management and the DES. The study is framed by the theoretical perspectives of Michel Foucault and Pierre Bourdieu. Both of these commentators examine social policy and practice in an effort to provide insight into the history and operation of social institutions. This study is especially influenced by Foucault’s archaeology and genealogy of knowledge, and his notion of governmentality. It is also particularly cognisant of Bourdieu’s thoughts on habitus, doxa and capital. The study contains reviews of literature in the areas of assessment, assessment policy, and assessment policy in Ireland. These reviews highlight current debate in each of these areas while also grounding this debate in an historical context. The dissertation contains four empirical sections. 1) It analyses policy documents prepared in the development of the published strategy as well as investigating the strategy itself. In so doing it is aware of the burgeoning influence of pan-national bodies on policy development. 2) A number of high profile policy makers were interviewed as part of the study and their views are interpreted in light of the findings of the literature reviews. 3) The perspective of teachers was sought through a questionnaire survey. This gathered data on these teachers’ views on the purpose of assessment as well as their actual practice. 4) Finally, children were also included as participants in this study. They were interviewed in focus groups and encouraged to contribute drawings as well on their views of assessment in primary school. Literacy and numeracy for learning and life is seen as a seminal document in Irish education. This study is significant in its analysis of original data from high profile policy makers, including two Ministers for Education and Skills. It is also significant in its inclusion of the perspectives of primary school pupils. Finally, the study considers the nature and role of assessment in a holistic manner by including the views of policy makers, teachers and pupils. The study notes that policy development in Ireland underwent a change in the preparation of Literacy and numeracy for learning and life and that international influences, while present, are also mediated to suit the local context. It also highlights a lack of clarity in the definition of assessment in primary education and argues that there is a lack of balance in the approaches that are prioritised. The study demonstrates that teachers are impacted by the strategy but that they also change it by focusing on their own concerns while using assessment tools. The children provide compelling evidence of the impact of assessment on the learner. The study shows how assessment tools (and school subjects) are valued with differing levels of importance by a variety of stakeholders.
Resumo:
Owing to an increased risk of aging population and a higher incidence of coronary artery disease (CAD), there is a need for more reliable and safer treatments. Numerous varieties of durable polymer-coated drug eluting stents (DES) are available in the market in order to mitigate in-stent restenosis. However, there are certain issues regarding their usage such as delayed arterial healing, thrombosis, inflammation, toxic corrosion by-products, mechanical stability and degradation. As a result, significant amount of research has to be devoted to the improvement of biodegradable polymer-coated implant materials in an effort to enhance their bioactive response. In this investigation, magneto-electropolished (MEP) and a novel biodegradable polymer coated ternary Nitinol alloys, NiTiTa and NiTiCr were prepared to study their bio and hemocompatibility properties. The initial interaction of a biomaterial with its surroundings is dependent on its surface characteristics such as, composition, corrosion resistance, work of adhesion and morphology. In-vitro corrosion tests such as potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were conducted to determine the coating stability and longevity. In-vitro hemocompatibility studies and HUVEC cell growth was performed to determine their thrombogenic and biocompatibility properties. Critical delamination load of the polymer coated Nitinol alloys was determined using Nano-scratch analysis. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions leached from Nitinol alloys on the viability of HUVEC cells. Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), contact angle meter and X-ray diffraction (XRD) were used to characterize the surface of the alloys. MEP treated and polymer coated (PC) Nitinol alloys displayed a corrosion resistant polymer coating as compared to uncoated alloys. MEP and PC has resulted in reduced Ni and Cr ion leaching from NiTi5Cr and subsequently low cytotoxicity. Thrombogenicity tests revealed significantly less platelet adhesion and confluent endothelial cell growth on polymer coated and uncoated ternary MEP Nitinol alloys. Finally, this research addresses the bio and hemocompatibility of MEP + PC ternary Nitinol alloys that could be used to manufacture blood contacting devices such as stents and vascular implants which can lead to lower U.S. healthcare spending.
Resumo:
Malnutrition (MN) is prevalent worldwide in hemodialysis patients (HDP); however it has not been assessed in HDP living in Jeddah, Saudi Arabia. The purpose of this study was to estimate the prevalence of MN in HDP at the Jeddah Kidney Center as well as to determine if the 7-point subjective global assessment (SGA) correlates with anthropometric [Body Mass Index (BMI), Tricep Skinfold Thickness (TSF), Mid-Arm Muscle Circumference (MAMC)], or biochemical (albumin) measurements. In a cross sectional, descriptive study, 270 HDP were assessed for MN. Over half of the HDP were malnourished, with 47.8% moderately and 6.3% severely malnourished. Fifty-eight percent of HDP did not adhere to their diet prescription. As albumin, BMI, TSF, and MAMC decreased, malnutrition became more severe (p < .01). Patients who were female (OR=.43, p=.001), older (OR=.45, p=.001), with no education (OR=3.10, p=.001), underweight (OR=3.56, p<.001), small TSF (OR=1.12, p=.001), and small MAMC (OR=1.15, p=.001) were more likely to be malnourished. The prevalence of MN is high in these HDP. A consistent nutritional assessment protocol is warranted and should be implemented to decrease MN in Saudi HDP.
Resumo:
Since the 1950s the global consumption of natural resources has skyrocketed, both in magnitude and in the range of resources used. Closely coupled with emissions of greenhouse gases, land consumption, pollution of environmental media, and degradation of ecosystems, as well as with economic development, increasing resource use is a key issue to be addressed in order to keep the planet Earth in a safe and just operating space. This requires thinking about absolute reductions in resource use and associated environmental impacts, and, when put in the context of current re-focusing on economic growth at the European level, absolute decoupling, i.e., maintaining economic development while absolutely reducing resource use and associated environmental impacts. Changing behavioural, institutional and organisational structures that lock-in unsustainable resource use is, thus, a formidable challenge as existing world views, social practices, infrastructures, as well as power structures, make initiating change difficult. Hence, policy mixes are needed that will target different drivers in a systematic way. When designing policy mixes for decoupling, the effect of individual instruments on other drivers and on other instruments in a mix should be considered and potential negative effects be mitigated. This requires smart and time-dynamic policy packaging. This Special Issue investigates the following research questions: What is decoupling and how does it relate to resource efficiency and environmental policy? How can we develop and realize policy mixes for decoupling economic development from resource use and associated environmental impacts? And how can we do this in a systemic way, so that all relevant dimensions and linkages—including across economic and social issues, such as production, consumption, transport, growth and wellbeing—are taken into account? In addressing these questions, the overarching goals of this Special Issue are to: address the challenges related to more sustainable resource-use; contribute to the development of successful policy tools and practices for sustainable development and resource efficiency (particularly through the exploration of socio-economic, scientific, and integrated aspects of sustainable development); and inform policy debates and policy-making. The Special Issue draws on findings from the EU and other countries to offer lessons of international relevance for policy mixes for more sustainable resource-use, with findings of interest to policy makers in central and local government and NGOs, decision makers in business, academics, researchers, and scientists.
Resumo:
Phytoplankton are crucial to marine ecosystem functioning and are important indicators of environmental change. Phytoplankton data are also essential for informing management and policy, particularly in supporting the new generation of marine legislative drivers, which take a holistic ecosystem approach to management. The Marine Strategy Framework Directive (MSFD) seeks to achieve Good Environmental Status (GES) of European seas through the implementation of such a management approach. This is a regional scale directive which recognises the importance of plankton communities in marine ecosystems; plankton data at the appropriate spatial, temporal and taxonomic scales are therefore required for implementation. The Continuous Plankton Recorder (CPR) survey is a multidecadal, North Atlantic basin scale programme which routinely records approximately 300 phytoplankton taxa. Because of these attributes, the survey plays a key role in the implementation of the MSFD and the assessment of GES in the Northeast Atlantic region. This paper addresses the role of the CPR's phytoplankton time-series in delivering GES through the development and informing of MSFD indicators, the setting of targets against a background of climate change and the provision of supporting information used to interpret change in non-plankton indicators. We also discuss CPR data in the context of other phytoplankton data types that may contribute to GES, as well as explore future possibilities for the use of new and innovative applications of CPR phytoplankton datasets in delivering GES. Efforts must be made to preserve long-term time series, such as the CPR, which supply vital ecological information used to informed evidence-based environmental policy.
Resumo:
Phytoplankton are crucial to marine ecosystem functioning and are important indicators of environmental change. Phytoplankton data are also essential for informing management and policy, particularly in supporting the new generation of marine legislative drivers, which take a holistic ecosystem approach to management. The Marine Strategy Framework Directive (MSFD) seeks to achieve Good Environmental Status (GES) of European seas through the implementation of such a management approach. This is a regional scale directive which recognises the importance of plankton communities in marine ecosystems; plankton data at the appropriate spatial, temporal and taxonomic scales are therefore required for implementation. The Continuous Plankton Recorder (CPR) survey is a multidecadal, North Atlantic basin scale programme which routinely records approximately 300 phytoplankton taxa. Because of these attributes, the survey plays a key role in the implementation of the MSFD and the assessment of GES in the Northeast Atlantic region. This paper addresses the role of the CPR's phytoplankton time-series in delivering GES through the development and informing of MSFD indicators, the setting of targets against a background of climate change and the provision of supporting information used to interpret change in non-plankton indicators. We also discuss CPR data in the context of other phytoplankton data types that may contribute to GES, as well as explore future possibilities for the use of new and innovative applications of CPR phytoplankton datasets in delivering GES. Efforts must be made to preserve long-term time series, such as the CPR, which supply vital ecological information used to informed evidence-based environmental policy.
Resumo:
Abstract. The performance objectives used for the formative assessment of com- plex skills are generally set through text-based analytic rubrics[1]. Moreover, video modeling examples are a widely applied method of observational learning, providing students with context-rich modeling examples of complex skills that act as an analogy for problem solving [1]. The purpose of this theoretical paper is to synthesize the components of video modeling and rubrics to support the formative assessment of complex skills. Based on theory, we argue that application of the developed Video Enhanced Rubrics (VER) fosters learners’ development of mental models, quality of provided feedback by various actors and finally, the learners mastery of complex skills.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Performing Macroscopy in Pathology implies to plan and implement methods of selection, description and collection of biological material from human organs and tissues, actively contributing to the clinical pathology analysis by preparing macroscopic report and the collection and identification of fragments, according to the standardized protocols and recognizing the criteria internationally established for determining the prognosis. The Macroscopy in Pathology course is a full year program with theoretical and pratical components taught by Pathologists. It is divided by organ/system surgical pathology into weekly modules and includes a practical "hands-on" component in Pathology Departments. The students are 50 biomedical scientists aged from 22 to 50 years old from all across the country that want to acquire competences in macroscopy. A blended learning strategy was used in order to: give students the opportunity to attend from distance; support the contents, lessons and the interaction with colleagues and teachers; facilitate the formative/summative assessment.
Resumo:
Although a clear correlation between levels of fungi in the air and health impacts has not been shown in epidemiological studies, fungi must be regarded as potential occupational health hazards. Fungi can have an impact on human health in four different ways: (1) they can infect humans, (2) they may act as allergens, (3) they can be toxigenic, or (4) they may cause inflammatory reactions. Fungi of concern in occupational hygiene are mostly non-pathogenic or facultative pathogenic (opportunistic) species, but are relevant as allergens and mycotoxins producers. It is known that the exclusive use of conventional methods for fungal quantification (fungal culture) may underestimate the results due to different reasons. The incubation temperature chosen will not be the most suitable for every fungal species, resulting in the inhibition of some species and the favouring of others. Differences in fungi growth rates may also result in data underestimation, since the fungal species with higher growth rates may inhibit others species’ growth. Finally, underestimated data can result from non-viable fungal particles that may have been collected or fungal species that do not grow in the culture media used, although these species may have clinical relevance in the context. Due to these constraints occupational exposure assessment, in setings with high fungal contamination levels, should follow these steps: Apply conventional methods to obtain fungal load information (air and surfaces) regarding the most critical scenario previously selected; Guideline comparation aplying or legal requirements or suggested limits by scientific and/or technical organizations. We should also compare our results with others from the same setting (if there is any); Select the most suitable indicators for each setting and apply conventional-culture methods and also molecular tools. These methodology will ensure a more real characterization of fungal burden in each setting and, consequently, permits to identify further measures regarding assessment of fungal metabolites, and also a more adequate workers health surveillance. The methodology applied to characterize fungal burden in several occupational environments, focused in Aspergillus spp. prevalence, will be present and discussed.
Resumo:
International audience
Resumo:
In the past decades the growing application of nanomaterials (NMs) in diverse consumer products has raised various concerns in the field of toxicology. They have been extensively used in a broad range of applications and cover most of the industrial sectors as well as the medicine and the environmental areas. The most common scenarios for human exposure to NMs are occupational, environmental and as consumers and inhalation is the most frequent route of exposure, especially in occupational settings. Cerium dioxide NMs (nano-CeO2) are widely used in a number of applications such as in cosmetics, outdoor paints, wood care products as well as fuel catalysts. For such reason, nano-CeO2 is one of the selected NMs for priority testing within the sponsorship program of the Working Party of Manufactured Nanomaterials of the OECD. In this context, the aim of this study is to assess the safety of nano-CeO2 (NM-212, Joint Research Center Repository) through the characterization of its cytotoxicity and genotoxicity in a human alveolar epithelial cell line. A dispersion of the NM in water plus 0.05% BSA was prepared and sonicated during 16 minutes, according to a standardized protocol. DLS analysis was used to characterize the quality of the NM dispersion in the culture medium. To evaluate the cytotoxicity of nano-CeO2 in the A549 cell line, the colorimetric MTT assay was performed; the capacity of cells to proliferate when exposed to CeO2 was also assessed with the Clonogenic assay. The genotoxicity of this NM was evaluated by the Comet Assay (3 and 24h of exposure) to quantify DNA breaks and the FPG-modified comet assay to assess oxidative DNA damage. The Cytokinesis-Block Micronucleus (CBMN) assay was used to further detect chromosome breaks or loss. The nano-CeO2 particles are spherical, displaying a diameter of 33 nm and 28 m2/g of surface area. The results of the MTT assay did not show any decreased in cells viability following treatment with a dose-range of nano-CeO2 during 24h. Nevertheless, the highest concentrations of this NM were able to significantly reduce the colony forming ability of A549 cells, suggesting that a prolonged exposure may be cytotoxic to these cells. Data from both genotoxicity assays revealed that nano-CeO2 was neither able to induce DNA breaks nor oxidative DNA damage. Likewise, no significant micronucleus induction was observed. Taken together, the present results indicate that this nano-CeO2 is not genotoxic in this alveolar cell line under the tested conditions, although further studies should be performed, e.g., gene mutation in somatic cells and in vivo chromosome damage (rodent micronucleus assay) to ensure its safety to human health.
Resumo:
The shift from decentralized to centralized A-level examinations (Abitur) was implemented in the German school system as a measure of Educational Governance in the last decade. This reform was mainly introduced with the intention of providing higher comparability of school examinations and student achievement as well as increasing fairness in school examinations. It is not known yet if these ambitious aims and functions of the new centralized examination format have been achieved and if fairer assessment can be guaranteed in terms of providing all students with the same opportunities to pass the examinations by allocating fair tests to different student subpopulations e.g., students of different background or gender. The research presented in this article deals with these questions and focuses on gender differences. It investigates gender-specific fairness of the test items in centralized Abitur examinations as high school exit examinations in Germany. The data are drawn from Abitur examinations in English (as a foreign language). Differential item functioning (DIF) analysis reveals that at least some parts of the examinations indicate gender inequality. (DIPF/Orig.)
Resumo:
Despite growing concern about transgenes escaping from fields, few studies have analysed the genetic diversity of crops in an agroecosystem over several years. Accurate information about the dynamics and relationship of the genetic diversity of crops in an agroecosystem is essential for risk assessment and policies concerning the containment of genetically modified crops and their coexistence with crops grown by conventional practices. Here, we analysed the genetic diversity of oilseed rape plants from fields and feral populations over 4 years in an agricultural landscape of 41 km2. We used exact compatibility and maximum likelihood assignment methods to assign these plants to cultivars. Even pure lines and hybrid cultivar seed lots contained several genotypes. The cultivar diversity in fields reflected the conventional view of agroecosystems quite well: that is, there was a succession of cultivars, some grown for longer than others because of their good performance, some used for one year and then abandoned, and others gradually adopted. Three types of field emerged: fields sown with a single cultivar, fields sown with two cultivars, and unassigned fields (too many cultivars or unassigned plants to reliably assign the field). Field plant diversity was higher than expected, indicating the persistence of cultivars that were grown for only one year. The cultivar composition of feral populations was similar to that of field plants, with an increasing number of cultivars each year. By using genetic tools, we found a link between the cultivars of field plants in a particular year and the cultivars of feral population plants in the following year. Feral populations on road verges were more diverse than those on path verges. All of these findings are discussed in terms of their consequences in the context of coexistence with genetically modified crops.