885 resultados para classification system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the signals captured during impacts and vibrations of a mechanical manipulator. The Fourier Transform of eighteen different signals are calculated and approximated by trendlines based on a power law formula. A sensor classification scheme based on the frequency spectrum behavior is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality of life is a concept influenced by social, economic, psychological, spiritual or medical state factors. More specifically, the perceived quality of an individual's daily life is an assessment of their well-being or lack of it. In this context, information technologies may help on the management of services for healthcare of chronic patients such as estimating the patient quality of life and helping the medical staff to take appropriate measures to increase each patient quality of life. This paper describes a Quality of Life estimation system developed using information technologies and the application of data mining algorithms to access the information of clinical data of patients with cancer from Otorhinolaryngology and Head and Neck services of an oncology institution. The system was evaluated with a sample composed of 3013 patients. The results achieved show that there are variables that may be significant predictors for the Quality of Life of the patient: years of smoking (p value 0.049) and size of the tumor (p value < 0.001). In order to assign the variables to the classification of the quality of life the best accuracy was obtained by applying the John Platt's sequential minimal optimization algorithm for training a support vector classifier. In conclusion data mining techniques allow having access to patients additional information helping the physicians to be able to know the quality of life and produce a well-informed clinical decision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the current economic situation of the Portuguese municipalities, it is necessary to identify the priority investments in order to achieve a more efficient financial management. The classification of the road network of the municipality according to the occurrence of traffic accidents is fundamental to set priorities for road interventions. This paper presents a model for road network classification based on traffic accidents integrated in a geographic information system. Its practical application was developed through a case study in the municipality of Barcelos. An equation was defined to obtain a road safety index through the combination of the following indicators: severity, property damage only and accident costs. In addition to the road network classification, the application of the model allows to analyze the spatial coverage of accidents in order to determine the centrality and dispersion of the locations with the highest incidence of road accidents. This analysis can be further refined according to the nature of the accidents namely in collision, runoff and pedestrian crashes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vision-based hand gesture recognition is an area of active current research in computer vision and machine learning. Being a natural way of human interaction, it is an area where many researchers are working on, with the goal of making human computer interaction (HCI) easier and natural, without the need for any extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them, for example, to convey information. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. Hand gestures are a powerful human communication modality with lots of potential applications and in this context we have sign language recognition, the communication method of deaf people. Sign lan- guages are not standard and universal and the grammars differ from country to coun- try. In this paper, a real-time system able to interpret the Portuguese Sign Language is presented and described. Experiments showed that the system was able to reliably recognize the vowels in real-time, with an accuracy of 99.4% with one dataset of fea- tures and an accuracy of 99.6% with a second dataset of features. Although the im- plemented solution was only trained to recognize the vowels, it is easily extended to recognize the rest of the alphabet, being a solid foundation for the development of any vision-based sign language recognition user interface system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Lecture notes in computer science series, ISSN 0302-9743, vol. 9273"

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present an integrated system for real-time automatic detection of human actions from video. The proposed approach uses the boundary of humans as the main feature for recognizing actions. Background subtraction is performed using Gaussian mixture model. Then, features are extracted from silhouettes and Vector Quantization is used to map features into symbols (bag of words approach). Finally, actions are detected using the Hidden Markov Model. The proposed system was validated using a newly collected real- world dataset. The obtained results show that the system is capable of achieving robust human detection, in both indoor and outdoor environments. Moreover, promising classification results were achieved when detecting two basic human actions: walking and sitting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Informática Médica)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Text classification, information filtering, semi-supervised learning, quality control

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuzzy classification, semi-supervised learning, data mining

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Habil.-Schr., 2006

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biosignals processing, Biological Nonlinear and time-varying systems identification, Electomyograph signals recognition, Pattern classification, Fuzzy logic and neural networks methods