898 resultados para classification accuracy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing - the acquisition of information about an object or phenomenon without making physical contact with the object - is applied in a multitude of different areas, ranging from agriculture, forestry, cartography, hydrology, geology, meteorology, aerial traffic control, among many others. Regarding agriculture, an example of application of this information is regarding crop detection, to monitor existing crops easily and help in the region’s strategic planning. In any of these areas, there is always an ongoing search for better methods that allow us to obtain better results. For over forty years, the Landsat program has utilized satellites to collect spectral information from Earth’s surface, creating a historical archive unmatched in quality, detail, coverage, and length. The most recent one was launched on February 11, 2013, having a number of improvements regarding its predecessors. This project aims to compare classification methods in Portugal’s Ribatejo region, specifically regarding crop detection. The state of the art algorithms will be used in this region and their performance will be analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines the effects of macroeconomic factors on inflation level and volatility in the Euro Area to improve the accuracy of inflation forecasts with econometric modelling. Inflation aggregates for the EU as well as inflation levels of selected countries are analysed, and the difference between these inflation estimates and forecasts are documented. The research proposes alternative models depending on the focus and the scope of inflation forecasts. I find that models with a Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) in mean process have better explanatory power for inflation variance compared to the regular GARCH models. The significant coefficients are different in EU countries in comparison to the aggregate EU-wide forecast of inflation. The presence of more pronounced GARCH components in certain countries with more stressed economies indicates that inflation volatility in these countries are likely to occur as a result of the stressed economy. In addition, other economies in the Euro Area are found to exhibit a relatively stable variance of inflation over time. Therefore, when analysing EU inflation one have to take into consideration the large differences on country level and focus on those one by one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the current economic situation of the Portuguese municipalities, it is necessary to identify the priority investments in order to achieve a more efficient financial management. The classification of the road network of the municipality according to the occurrence of traffic accidents is fundamental to set priorities for road interventions. This paper presents a model for road network classification based on traffic accidents integrated in a geographic information system. Its practical application was developed through a case study in the municipality of Barcelos. An equation was defined to obtain a road safety index through the combination of the following indicators: severity, property damage only and accident costs. In addition to the road network classification, the application of the model allows to analyze the spatial coverage of accidents in order to determine the centrality and dispersion of the locations with the highest incidence of road accidents. This analysis can be further refined according to the nature of the accidents namely in collision, runoff and pedestrian crashes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vision-based hand gesture recognition is an area of active current research in computer vision and machine learning. Being a natural way of human interaction, it is an area where many researchers are working on, with the goal of making human computer interaction (HCI) easier and natural, without the need for any extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them, for example, to convey information. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. Hand gestures are a powerful human communication modality with lots of potential applications and in this context we have sign language recognition, the communication method of deaf people. Sign lan- guages are not standard and universal and the grammars differ from country to coun- try. In this paper, a real-time system able to interpret the Portuguese Sign Language is presented and described. Experiments showed that the system was able to reliably recognize the vowels in real-time, with an accuracy of 99.4% with one dataset of fea- tures and an accuracy of 99.6% with a second dataset of features. Although the im- plemented solution was only trained to recognize the vowels, it is easily extended to recognize the rest of the alphabet, being a solid foundation for the development of any vision-based sign language recognition user interface system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of Barotrauma is identified as a major concern for health professionals, since it can be fatal for patients. In order to support the decision process and to predict the risk of occurring barotrauma Data Mining models were induced. Based on this principle, the present study addresses the Data Mining process aiming to provide hourly probability of a patient has Barotrauma. The process of discovering implicit knowledge in data collected from Intensive Care Units patientswas achieved through the standard process Cross Industry Standard Process for Data Mining. With the goal of making predictions according to the classification approach they several DM techniques were selected: Decision Trees, Naive Bayes and Support Vector Machine. The study was focused on identifying the validity and viability to predict a composite variable. To predict the Barotrauma two classes were created: “risk” and “no risk”. Such target come from combining two variables: Plateau Pressure and PCO2. The best models presented a sensitivity between 96.19% and 100%. In terms of accuracy the values varied between 87.5% and 100%. This study and the achieved results demonstrated the feasibility of predicting the risk of a patient having Barotrauma by presenting the probability associated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RMR system is still very much applied in rock mechanics engineering context. It is based on the evaluation of six weights to obtain a final rating. To obtain the final rating a considerable amount of information is needed concerning the rock mass which can be difficult to obtain in some projects or project stages at least with accuracy. In 2007 an alternative classification scheme based on the RMR, the Hierarchical Rock Mass Rating (HRMR) was presented. The main feature of this system was the adaptation to the level of knowledge existent about the rock mass to obtain the classification of the rock mass since it followed a decision tree approach. However, the HRMR was only valid for hard rock granites with low fracturing degrees. In this work, the database was enlarged with approximately 40% more cases considering other types of granite rock masses including weathered granites and based on this increased database the system was updated. Granite formations existent in the north of Portugal including Porto city are predominantly granites. Some years ago a light rail infrastructure was built in the city of Porto and surrounding municipalities whi h involved considerable challenges due to the high heterogeneity levels of the granite formations and the difficulties involved in their geomechanical characterization. In this work it is intended to provide also a contribution to improve the characterization of these formations with special emphasis to the weathered horizons. A specific subsystem applicable to the weathered formations was developed. The results of the validation of these systems are presented and show acceptable performances in identifying the correct class using less information than with the RMR system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Several studies link the seamless fit of implant-supported prosthesis with the accuracy of the dental impression technique obtained during acquisition. In addition, factors such as implant angulation and coping shape contribute to implant misfit. Purpose To identify the most accurate impression technique and factors affecting the impression accuracy. Material and Methods A systematic review of peer-reviewed literature was conducted analyzing articles published between 2009 and 2013. The following search terms were used: implant impression, impression accuracy, and implant misfit. A total of 417 articles was identified, 32 were selected for review. Results All 32 selected studies refer to in vitro studies. Fourteen articles compare open and closed impression technique, 8 advocate the open technique and 6 report similar results. Other 14 articles evaluate splinted and non-splinted techniques; all advocating the splinted technique. Polyether material usage was reported in 9; 6 studies tested vinyl polysiloane and 1 study used irreversible hydrocolloid. Eight studies evaluated different copings designs. Intra-oral optical devices were compared in 4 studies. Conclusions The most accurate results were achieved with two configurations: (1) the optical intra-oral system with powder; and (2) the open technique with splinted squared transfer copings, using polyether as impression material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The supercritical fluid technology has been target of many pharmaceuticals investigations in particles production for almost 35 years. This is due to the great advantages it offers over others technologies currently used for the same purpose. A brief history is presented, as well the classification of supercritical technology based on the role that the supercritical fluid (carbon dioxide) performs in the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the sphygmomanometers calibration accuracy and the physical conditions of the cuff-bladder, bulb, pump, and valve. METHODS: Sixty hundred and forty five aneroid sphygmomanometers were evaluated, 521 used in private practice and 124 used in hospitals. Aneroid manometers were tested against a properly calibrated mercury manometer and were considered calibrated when the error was <=3mm Hg. The physical conditions of the cuffs-bladder, bulb, pump, and valve were also evaluated. RESULTS: Of the aneroid sphygmomanometers tested, 51% of those used in private practice and 56% of those used in hospitals were found to be not accurately calibrated. Of these, the magnitude of inaccuracy ranged from 4 to 8mm Hg in 70% and 51% of the devices, respectively. The problems found in the cuffs - bladders, bulbs, pumps, and valves of the private practice and hospital devices were bladder damage (34% vs. 21%, respectively), holes/leaks in the bulbs (22% vs. 4%, respectively), and rubber aging (15% vs. 12%, respectively). Of the devices tested, 72% revealed at least one problem interfering with blood pressure measurement accuracy. CONCLUSION: Most of the manometers evaluated, whether used in private practice or in hospitals, were found to be inaccurate and unreliable, and their use may jeopardize the diagnosis and treatment of arterial hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unsuitable patient flow as well as prolonged waiting lists in the emergency room of a maternity unit, regarding gynecology and obstetrics care, can affect the mother and child’s health, leading to adverse events and consequences regarding their safety and satisfaction. Predicting the patients’ waiting time in the emergency room is a means to avoid this problem. This study aims to predict the pre-triage waiting time in the emergency care of gynecology and obstetrics of Centro Materno Infantil do Norte (CMIN), the maternal and perinatal care unit of Centro Hospitalar of Oporto, situated in the north of Portugal. Data mining techniques were induced using information collected from the information systems and technologies available in CMIN. The models developed presented good results reaching accuracy and specificity values of approximately 74% and 94%, respectively. Additionally, the number of patients and triage professionals working in the emergency room, as well as some temporal variables were identified as direct enhancers to the pre-triage waiting time. The imp lementation of the attained knowledge in the decision support system and business intelligence platform, deployed in CMIN, leads to the optimization of the patient flow through the emergency room and improving the quality of services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To compare the accuracy of 4 different indices of cardiac risk currently used for predicting perioperative cardiac complications. METHODS: We studied 119 patients at a university-affiliated hospital whose cardiac assessment had been required for noncardiac surgery. Predictive factors of high risk for perioperative cardiac complications were assessed through clinical history and physical examination, and the patients were followed up after surgery until the 4th postoperative day to assess the occurrence of cardiac events. All patients were classified according to 4 indices of cardiac risk: the Goldman risk-factor index, Detsky modified risk index, Larsen index, and the American Society of Anesthesiologists' physical status classification and their compared accuracies, examining the areas under their respective receiver operating characteristic (ROC) curves. RESULTS: Cardiac complications occurred in 16% of the patients. The areas under the ROC curves were equal for the Goldman risk-factor index, the Larsen index, and the American Society of Anesthesiologists' physical status classification: 0.48 (SEM ± 0.03). For the Detsky index, the value found was 0.38 (SEM ± 0.03). This difference in the values was not statistically significant. CONCLUSION: The cardiac risk indices currently used did not show a better accuracy than that obtained randomly. None of the indices proved to be significantly better than the others. Studies to improve our ability to predict such complications are still required.