981 resultados para chemical shifts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Towards understanding the catalytic mechanism of M.EcoP15I [EcoP15I MTase (DNA methyltransferase); an adenine methyltransferase], we investigated the role of histidine residues in catalysis. M.EcoP15I, when incubated with DEPC (diethyl pyrocarbonate), a histidine-specific reagent, shows a time- and concentration-dependent inactivation of methylation of DNA containing its recognition sequence of 5'-CAGCAG-3'. The loss of enzyme activity was accompanied by an increase in absorbance at 240 nm. A difference spectrum of modified versus native enzyme shows the formation of N-carbethoxyhistidine that is diminished by hydroxylamine. This, along with other experiments, strongly suggests that the inactivation of the enzyme by DEPC was specific for histidine residues. Substrate protection experiments show that pre-incubating the methylase with DNA was able to protect the enzyme from DEPC inactivation. Site-directed mutagenesis experiments in which the 15 histidine residues in the enzyme were replaced individually with alanine corroborated the chemical modification studies and established the importance of His-335 in the methylase activity. No gross structural differences were detected between the native and H335A mutant MTases, as evident from CD spectra, native PAGE pattern or on gel filtration chromatography. Replacement of histidine with alanine residue at position 335 results in a mutant enzyme that is catalytically inactive and binds to DNA more tightly than the wild-type enzyme. Thus we have shown in the present study, through a combination of chemical modification and site-directed mutagenesis experiments, that His-335 plays an essential role in DNA methylation catalysed by M.EcoP15I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The critical behavior of osmotic susceptibility in an aqueous electrolyte mixture 1-propanol (1P)+water (W)+potassium chloride is reported. This mixture exhibits re-entrant phase transitions and has a nearly parabolic critical line with its apex representing a double critical point (DCP). The behavior of the susceptibility exponent is deduced from static light-scattering measurements, on approaching the lower critical solution temperatures (TL’s) along different experimental paths (by varying t) in the one-phase region. The light-scattering data analysis substantiates the existence of a nonmonotonic crossover behavior of the susceptibility exponent in this mixture. For the TL far away from the DCP, the effective susceptibility exponent γeff as a function of t displays a nonmonotonic crossover from its single limit three-dimensional (3D)-Ising value ( ∼ 1.24) toward its mean-field value with increase in t. While for that closest to the DCP, γeff displays a sharp, nonmonotonic crossover from its nearly doubled 3D-Ising value toward its nearly doubled mean-field value with increase in t. The renormalized Ising regime extends over a relatively larger t range for the TL closest to the DCP, and a trend toward shrinkage in the renormalized Ising regime is observed as TL shifts away from the DCP. Nevertheless, the crossover to the mean-field limit extends well beyond t>10−2 for the TL’s studied. The observed crossover behavior is attributed to the presence of strong ion-induced clustering in this mixture, as revealed by various structure probing techniques. As far as the critical behavior in complex or associating mixtures with special critical points (like the DCP) is concerned, our results indicate that the influence of the DCP on the critical behavior must be taken into account not only on the renormalization of the critical exponent but also on the range of the Ising regime, which can shrink with decrease in the influence of the DCP and with the extent of structuring in the system. The utility of the field variable tUL in analyzing re-entrant phase transitions is demonstrated. The effective susceptibility exponent as a function of tUL displays a nonmonotonic crossover from its asymptotic 3D-Ising value toward a value slightly lower than its nonasymptotic mean-field value of 1. This behavior in the nonasymptotic, high tUL region is interpreted in terms of the possibility of a nonmonotonic crossover to the mean-field value from lower values, as foreseen earlier in micellar systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the nursery pollination system of figs (Ficus, Moraceae), flower-bearing receptacles called syconia breed pollinating wasps and are units of both pollination and seed dispersal. Pollinators and mammalian seed dispersers are attracted to syconia by volatile organic compounds (VOCs). In monoecious figs, syconia produce both wasps and seeds, while in (gyno)dioecious figs, male (gall) fig trees produce wasps and female (seed) fig trees produce seeds. VOCs were collected using dynamic headspace adsorption methods on freshly collected figs from different trees using Super Q® collection traps. VOC profiles were determined using gas chromatography–mass spectrometry (GC–MS).The VOC profile of receptive and dispersal phase figs were clearly different only in the dioecious mammal-dispersed Ficus hispida but not in dioecious bird-dispersed F. exasperata and monoecious bird-dispersed F. tsjahela. The VOC profile of dispersal phase female figs was clearly different from that of male figs only in F. hispida but not in F. exasperata, as predicted from the phenology of syconium production which only in F. hispida overlaps between male and female trees. Greater difference in VOC profile in F. hispida might ensure preferential removal of seed figs by dispersal agents when gall figs are simultaneously available.The VOC profile of only mammal-dispersed female figs of F. hispida had high levels of fatty acid derivatives such as amyl-acetates and 2-heptanone, while monoterpenes, sesquiterpenes and shikimic acid derivatives were predominant in the other syconial types. A bird- and mammal-repellent compound methyl anthranilate occurred only in gall figs of both dioecious species, as expected, since gall figs containing wasp pollinators should not be consumed by dispersal agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleation is the first step of the process by which gas molecules in the atmosphere condense to form liquid or solid particles. Despite the importance of atmospheric new-particle formation for both climate and health-related issues, little information exists on its precise molecular-level mechanisms. In this thesis, potential nucleation mechanisms involving sulfuric acid together with either water and ammonia or reactive biogenic molecules are studied using quantum chemical methods. Quantum chemistry calculations are based on the numerical solution of Schrödinger's equation for a system of atoms and electrons subject to various sets of approximations, the precise details of which give rise to a large number of model chemistries. A comparison of several different model chemistries indicates that the computational method must be chosen with care if accurate results for sulfuric acid - water - ammonia clusters are desired. Specifically, binding energies are incorrectly predicted by some popular density functionals, and vibrational anharmonicity must be accounted for if quantitatively reliable formation free energies are desired. The calculations reported in this thesis show that a combination of different high-level energy corrections and advanced thermochemical analysis can quantitatively replicate experimental results concerning the hydration of sulfuric acid. The role of ammonia in sulfuric acid - water nucleation was revealed by a series of calculations on molecular clusters of increasing size with respect to all three co-ordinates; sulfuric acid, water and ammonia. As indicated by experimental measurements, ammonia significantly assists the growth of clusters in the sulfuric acid - co-ordinate. The calculations presented in this thesis predict that in atmospheric conditions, this effect becomes important as the number of acid molecules increases from two to three. On the other hand, small molecular clusters are unlikely to contain more than one ammonia molecule per sulfuric acid. This implies that the average NH3:H2SO4 mole ratio of small molecular clusters in atmospheric conditions is likely to be between 1:3 and 1:1. Calculations on charged clusters confirm the experimental result that the HSO4- ion is much more strongly hydrated than neutral sulfuric acid. Preliminary calculations on HSO4- NH3 clusters indicate that ammonia is likely to play at most a minor role in ion-induced nucleation in the sulfuric acid - water system. Calculations of thermodynamic and kinetic parameters for the reaction of stabilized Criegee Intermediates with sulfuric acid demonstrate that quantum chemistry is a powerful tool for investigating chemically complicated nucleation mechanisms. The calculations indicate that if the biogenic Criegee Intermediates have sufficiently long lifetimes in atmospheric conditions, the studied reaction may be an important source of nucleation precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La0.5Li0.5TiO3 perovskite was synthesized by various wet chemical methods. By adopting low temperature methods of preparation lithium loss from the material is prevented. La0.5Li0.5TiO3 (LLTO) was formed with cubic symmetry at 1473 K. LLTO was formed at relatively lower temperature by using hydrothermal preparation method. PVA gel-decomposition route yield tetragonal LLTO on annealing the dried gel at 1473 K. By using gel-carbonate route LiTi2O4 minor phase was found to remain even after heat-treatment at 1473 K. The hydroxylation of LLTO was done in deionized water as well as in dilute acetic acid medium. By hydroxylation process incorporation of hydroxyls and leaching out of Li+ was observed from the material. The Li+ concentration of these compositions was examined by AAS. The electrical conductivities of these compositions were measured by dc and ac impedance techniques at elevated temperatures. The activation energies of electrical conduction for these compositions were estimated from the experimental results. The measured activation energy of Li+ conduction is 0.34 eV. Unhydroxylated samples exhibit only Li+ conduction, whereas, the hydroxylated LLTO show proton conductivity at 298-550 K in addition to Li+ conductivity. The effect of Zr or Ce substitution in place of Ti were attempted. La0.5Li0.5ZrO3 Perovskite was not formed; instead pyrochlore phase (La2Zr2O7) along with monoclinic ZrO2 phases was observed above 1173 K; below 1173 K cubic ZrO2 is stable. (La0.5Li0.5)(2)CeO4 solid solution was formed in the case of Ce substitution at Ti sublattice on heat-treatment up to 1673 K. (c) 2005 Springer Science + Business Media, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycoprotein isolated from sheep plasma was chemically modified, and the effect of chemical modification on biological activities and immunological cross reactions has been studied. The removal of sialic acid resulted in a change in the “overall conformation” of the glycoprotein as evidenced by a decrease in viscosity of the glycoprotein solution and an increased susceptibility of the glycoprotein to proteolytic enzymes. Sialic acid-free glycoprotein no longer inhibited the tryptic activity or prolonged the clotting time of plasma. However, it could react with the antiserum to sheep plasma glycoprotein. The periodate oxidation of sheep plasma glycoprotein resulted in a complete loss of inhibition of trypsin activity, prolongation of plasma clotting time, and the ability to cross-react with the rabbit antiserum. The significance of periodate oxidation in relation to the possible sequence of sugars in the carbohydrate prosthetic group in the glycoprotein is discussed. Iodination and heating in buffers of acid and alkaline pH values of sheep plasma glycoprotein resulted in complete loss of trypsin activity and ability to prolong plasma clotting time. Iodination of the glycoprotein did not affect the immunological cross-reactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of non-polar, polar and proton-donating solvents on the n → π* transitions of C=O, C=S, NO2 and N=N groups have been investigated. The shifts of the absorption maxima in non-polar and polar solvents have been related to the electrostatic interactions between solute and solvent molecules, by employing the theory of McRAE. In solvents which can donate protons the solvent shifts are mainly determined by solute-solvent hydrogen bonding. Isobestic points have been found in the n → π* bonds of ethylenetrithio-carbonate in heptane-alcohol and heptane-chloroform solvent systems, indicating the existence of equilibria between the hydrogen bonded and the free species of the solute. Among the different proton-donating solvents studied water produces the largest blue-shifts. The blue-shifts in alcohols decrease in the order 2,2,2-trifluoroethanol, methanol, ethanol, isopropanol and t-butanol, the blue-shift in trifluoroethanol being nearly equal to that in water. This trend is exactly opposite to that for the self-association of alcohols. It is suggested that electron-withdrawing groups not merely decrease the extent of self-association of alcohols, but also increase the ability to donate hydrogen bonds. The approximate hydrogen-bond energies for several donor-acceptor systems have been estimated. In a series of aliphatio ketones and nitro compounds studied, the blue-shifts and consequently the hydrogen bond energies decrease with the decrease in the electron-withdrawing power of the alkyl groups. It is felt that electron-withdrawing groups render the chromophores better proton acceptors, and the alcohols better donors. A linear relationship between n → π* transition frequency and the infrared frequency of ethylenetrithiocarbonate has been found. It is concluded that stabilization of the electronic ground states of solute molecules by electrostatic and/or hydrogen-bond interactions determines the solvent shifts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In handling large volumes of data such as chemical notations, serial numbers for books, etc., it is always advisable to provide checking methods which would indicate the presence of errors. The entire new discipline of coding theory is devoted to the study of the construction of codes which provide such error-detecting and correcting means.l Although these codes are very powerful, they are highly sophisticated from the point of view of practical implementation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of AgI based fast ion conducting glasses, with a general formula AgI---Ag2O---MxOy (MxOy=MoO3, SeO3, WO3, V2O5, P2O5, GeO2, B2O3, As2O3, CrO3) have been studied. A chemical approach is made to investigate the origin of fast ion conduction in these glasses. An index known as Image tructural Image npinning Image umber, SUN (S), has been defined for the purpose, based on the unscreened nuclear charge of silver ions and the equilibrium lectronegativities of the halide-oxyanion matrix in these glasses. The variation of the glass transition temperature, Tg, conductivity, σ, and the energy of activation, Ea, with the concentration of AgI are discussed in the light of the structural unpinning number. Conductivities increase uniformly in any given glass series as a smooth function of S and level off at very high values. The entire range of conductivity appears to vary as ln Image , where ln σ0 corresponds roughly to the conductivity of the hypothetical AgI glass and “a” is a constant which could be obtained as the slope in the graph of ln Ea versus S. It is suggested that the increase in the concentration of AgI beyond 75–80 mole% in the glass is not advantageous from the conductivity point of view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxygen potentials corresponding to fayalite-quartz-iron (FQI) and fayalite-quartz-magnetite (FQM) equilibria have been determined using solid-state galvanic cells: Pt,Fe + Fe2SiO4 + SiO2/(Y2O3)ZrO2/Fe + \r"FeO,\l"Pt and Pt, Fe3O4 + Fe2SiO4 + SiO2/(Y2O3)ZrO2/Ni + NiO, Pt in the temperature ranges 900 to 1400 K and 1080 to 1340 K, respectively. The cells are written such that the right-hand electrodes are positive. Silica used in this study had the quartz structure. The emf of both cells was found to be reversible and to vary linearly with temperature. From the emf, Gibbs energy changes were deduced for the reactions: 0.106Fe (s) + 2Fe0.947O (r.s.) + SiO2 (qz) → Fe2SiO4 (ol) δG‡= -39,140+ 15.59T(± 150) J mol-1 and 3Fe2SiO4 (ol) + O2 (g) → 2Fe3O4 (sp) + 3SiO2 (qz) δG‡ = -471,750 + 160.06 T±} 1100) J mol-1 The “third-law≓ analysis of fayalite-quartz-wustite and fayalite-quartz-magnetite equilibria gives value for δH‡298 as -35.22 (±0.1) and -528.10 (±0.1) kJ mol-1, respectively, independent of temperature. The Gibbs energy of formation of the spinel form of Fe2SiO4 is derived by com-bining the present results on FQI equilibrium with the high-pressure data on olivine to spinel transformation of Fe2SiO4.