947 resultados para Wheatstone bridge
Resumo:
The structural continuity of fully integral bridges entails many advantages and some drawbacks. Among the latter, the cyclic expansions and contractions of the deck caused by seasonal thermal variations impose alternating displacements at the piers and abutments, with effects that may be difficult to establish reliably. The advantages include easier construction and cheaper maintenance but, especially, horizontal loads can be transmitted to the ground in a much better way than in conventional bridges. This paper first presents a methodology for dealing with the problems that the cyclic displacements imposed raise at the abutments and at the bridge piers. At the former, large pressures may develop, possibly accompanied by undesirable surface settlements. At the latter, the degree of cracking and the ability to carry the specified loads may be in question. Having quantified the drawbacks, simplified but realistic analyses are conducted of the response of an integral bridge to braking and seismic loads. It is shown that integral bridges constitute an excellent alternative in the context of the requirements posed by new high-speed railway lines.
Resumo:
When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduct
Resumo:
There are large numbers of business communities in India which neither had any formal education nor they took any professional training but still they contribute in successful business formation. Their presence can be felt in all areas of business. Still there is a big professional gap between the educational institutes, specially the B-Schools and this independent business community. With the help of this paper an effort is made to develop a Two-Way learning relationship for the mutual benefit of both entities. It will also highlight the role of an educational institute beyond academics for the well being of society. This may lead to derive and develop the exchange of innovative business ideas and framing the suitable policies for long term sustainability in today´s competitive arena. The study conducted by researcher with a sample size of 100 which includes a mix of well known academic professionals, MBA students and non academic business professionals has revealed that there is a need of an exchange program for the mutual benefits. There exists a big professional gap in this area which can be filled with the active and effective initiative by management institutes. An effort is made in this paper to highlight this gap and to suggest some framework to bridge the gap
Resumo:
The advantages of tabled evaluation regarding program termination and reduction of complexity are well known —as are the significant implementation, portability, and maintenance efforts that some proposals (especially those based on suspension) require. This implementation effort is reduced by program transformation-based continuation call techniques, at some efficiency cost. However, the traditional formulation of this proposal by Ramesh and Cheng limits the interleaving of tabled and non-tabled predicates and thus cannot be used as-is for arbitrary programs. In this paper we present a complete translation for the continuation call technique which, using the runtime support needed for the traditional proposal, solves these problems and makes it possible to execute arbitrary tabled programs. We present performance results which show that CCall offers a useful tradeoff that can be competitive with state-of-the-art implementations.
Resumo:
The experimental results obtained in experiment “STACO” made on board the Spacelab D-2 are re-visited, with image-analysis tools not then available. The configuration consisted of a liquid bridge between two solid supporting discs. An expected breakage occurred during the experiment. The recorded images are analysed and the measured behaviour compared with the results of a three dimensional model of the liquid dynamics, obtaining a much better fit than with linear models
Resumo:
Strong motion records obtained in instrumented short-span bridges show the importance of the abutments in the dynamic response of the structure. Existing models study the pier foundation influence but not the abutment performance. This work proposes two and three dimensional boundary element models in the frequency domain and studies the dimensionless dynamic stiffness of standard bridge abutments.