1000 resultados para Welington Andrade
Resumo:
The in vitro inhibitory activity of crude EtOH/H(2)O extracts from the leaves and stems of Rosmarinus officinalis L. was evaluated against the following microorganisms responsible for initiating dental caries: Streptococcus mutans, salivarius, S. sobrinus, S. mitts 5 sanguinis, and Enterococcus faecalis. Minimum inhibitory concentrations (MIC) were determined with the broth microdilution method. The bioassay-guided fractionation of the leaf extract, which displayed the higher antibacterial activity than the stem extract, led to the identification of carnosic acid (2) and carnosol (3) as the major compounds in the fraction displaying the highest activity, as identified by HPLC analysis. Rosmarinic acid (1), detected in another fraction, did not display any activity against the selected microorganisms. HPLC Analysis revealed the presence of low amounts of ursolic acid (4) and oleanolic acid (5) in the obtained fractions. The results suggest that the antimicrobial activity of the extract from the leaves of R. officinalis may be ascribed mainly to the action of 2 and 3.
Resumo:
Pt-Sn electrocatalysts of different compositions were prepared and dispersed on carbon Vulcan XC-72 using the Pechini-Adams method. The catalysts were characterized by energy dispersive X-ray analysis and X-ray diffraction. The electrochemical properties of these electrode materials were also examined by cyclic voltammetry and chronoamperometric experiments in acid medium. The results showed that the presence of Sn greatly enhances the activity of Pt towards the electrooxidation of ethanol. Moreover, it contributes to reduce the amount of noble metal in the anode of direct alcohol fuel cells, which remains one of the challenges to make the technology of direct alcohol fuel cells possible. Electrolysis of ethanol solutions at 0.55 V vs. RHE allowed to determine by liquid chromatography acetaldehyde and acetic acid as the main reaction products. CO(2) was also analyzed after trapping it in a NaOH solution indicating that the cleavage of the C-C bond in the ethanol molecule did occur during the adsorption process. In situ IR reflectance spectroscopy helped to investigate in more details the reaction mechanism through the identification of the reaction products as well as the presence of some intermediate adsorbed species, such as linearly bonded carbon monoxide. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper has investigated the electrochemical oxidation of glyphosate herbicide (GH) on RuO(2) and IrO(2) dimensionally stable anode (DSA (R)) electrodes. Electrolysis was achieved under galvanostatic control as a function of pH, GH concentration, supporting electrolyte, and current density. The influence of the oxide composition on GH degradation seems to be significant in the absence of chloride; Ti/Ir(0.30)Sn(0.70)O(2) is the best electrode material to oxidize GH. GH oxidation is favored at low pH values. The use of chloride medium increases the oxidizing power and the influence of the oxide composition is meaningless. At 30 mA cm(-2) and 4 h of electrolysis, complete GH removal from the electrolyzed solution has been obtained. In chloride medium, application of 50 mA cm(-2) leads to virtually total mineralization ( release of phosphate ions = 91%) for all the evaluated oxide materials. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Preparation methods can profoundly affect the structural and electrochemical properties of electrocatalytic coatings. In this investigation, RuO(2)-Ta(2)O(5) thin films containing between 10 and 90 at.% Ru were prepared by the Pechini-Adams method. These coatings were electrochemically and physically characterized by cyclic voltammetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The composition and morphology of the oxide were investigated before and after accelerated life tests (ALT) by EDX and SEM. SEM results indicate typical mud-flat-cracking morphology for the majority of the films. High resolution SEMs reveal that pure oxide phases exhibit nanoporosity while binary compositions display a very compact structure. EDX analyses reveal considerable amounts of Ru in the coating even after total deactivation. XRD indicated a rutile-type structure for RuO(2) and orthorhombic structure for Ta(2)O(5). XPS data demonstrate that the binding energy of Ta is affected by Ru addition in the thin films, but the binding energy of Ru is not likewise influenced by Ta. The stability of the electrodes was evaluated by ALT performed at 750 mA cm(-2) in 80 degrees C 0.5 mol dm(-3) H(2)SO(4). The performance of electrodes prepared by the Pechini-Adams method is 100% better than that of electrodes prepared by standard thermal decomposition.
Resumo:
Binary and ternary Pt-based catalysts were prepared by the Pechini-Adams modified method on carbon Vulcan XC-72, and different nominal compositions were characterized by TEM and XRD. XRD showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of a solid solution between the metals Pt/W and Pt/Sn. Electrochemical investigations on these different electrode materials were carried out as a function of the electrocatalyst composition, in acid medium (0.5 mol dm(-3) H2SO4) and in the presence of ethanol. The results obtained at room temperature showed that the PtSnW/C catalyst display better catalytic activity for ethanol oxidation compared to PtW/C catalyst. The reaction products (acetaldehyde, acetic acid and carbon dioxide) were analyzed by HPLC and identified by in situ infrared reflectance spectroscopy. The latter technique also allowed identification of the intermediate and adsorbed species. The presence of linearly adsorbed CO and CO2 indicated that the cleavage of the C-C bond in the ethanol substrate occurred during the oxidation process. At 90 degrees C, the Pt85Sn8W7/C catalyst gave higher current and power performances as anode material in a direct ethanol fuel cell (DEFC).
Resumo:
Surface pressure (pi)-molecular area (A) curves were used to characterize the packing of pseudo-ternary mixed Langmuir monolayers of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and L-alpha-dioleoyl phosphatidylethanolamine (DOPE). This pseudo-ternary mixture EPC/DOPE/DOTAP has been successfully employed in liposome formulations designed for DNA non-viral vectors. Pseudo-binary mixtures were also studied as a control. Miscibility behavior was inferred from pi-A curves applying the additivity rule by calculating the excess free energy of mixture (Delta G(Exc)). The interaction between the lipids was also deduced from the surface compressional modulus (C(s)(-1)). The deviation from ideality shows dependence on the lipid polar head type and monolayer composition. For lower DOPE concentrations, the forces are predominantly attractive. However, if the monolayer is DOPE rich, the DOTAP presence disturbs the PE-PE intermolecular interaction and the net interaction is then repulsive. The ternary monolayer EPC/DOPE/DOTAP presented itself in two configurations, modulated by the DOPE content, in a similar behavior to the DOPE/DOTAP monolayers. These results contribute to the understanding of the lipid interactions and packing in self-assembled systems associated with the in vitro and in vivo stability of liposomes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Different compositions of Pt, PtNi, PtSn, and PtSnNi electrocatalysts supported on carbon Vulcan XC-72 were prepared through thermal decomposition of polymeric precursors. The nanoparticles were characterized by morphological and structural analyses (XRD, TEM, and EDX). XRD results revealed a face-centered cubic structure for platinum, and there was evidence that Ni and Sn atoms are incorporated into the Pt structure. The electrochemical investigation was carried out in slightly acidic medium (H(2)SO(4) 0.05 mol L(-1)), in the absence and in the presence of ethanol. Addition of Ni to Pt/C and PtSn/C catalysts significantly shifted the onset of ethanol and CO oxidations toward lower potentials, thus enhancing the catalytic activity, especially in the case of the ternary PtSnNi/C composition. Electrolysis of ethanol solutions at 0.4 V us. RHE allowed for determination of acetaldehyde and acetic acid as the reaction products, as detected by HPLC analysis. Due to the high concentration of ethanol employed in the electrolysis experiments (1.0 mol L(-1)), no formation of CO(2) was observed. Copyright (C) 2010, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The influence of the preparation method on the structural properties of the RuO(2)-Ta(2)O(5) system was investigated. Both thin films on Ti substrates and powder samples of nominal composition Ti/RuO(2)-Ta(2)O(5) (Ru:Ta = 100:0, 90:10, 80:20, 30:70, and 0:100 at.%) were prepared through thermal decomposition of polymeric precursors (DPP). The thin films and powder samples were investigated using X-ray absorption spectroscopy (XAS). XANES analyses showed that Ru and Ta are present in the Ru(IV) and Ta(V) oxidation states. EXAFS signals of all the samples were analyzed, to obtain the average bond length (r), coordination number, and the Debye-Waller factor (sigma(2)) for each Ru-O, Ru-Ru, Ta-O nearest-neighbor. The first shell Ru-O distance was found at 1.91-1.92 angstrom with coordination number of 1.8-2.1, and at 2.01-2.02 angstrom with coordination number of 3.9-4.1. The Ta-O distance obtained for all the samples and in both modes (transmission and fluorescence) had significantly different values from the theoretical ones. The results revealed that the local structure around both the Ru and Ta sites are similar, and that they consist of distorted M-O(6) octahedra (where M = Ru or Ta). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the use of the electrostatic layer-by-layer (LbL) technique for the preparation of bioanodes with potential application in ethanol/O(2) biofuel cells. More specifically, the LbL technique was employed for immobilization of dehydrogenase enzymes and polyamidoamine (PAMAM) dendrimers onto carbon paper support. Both mono (anchoring only the enzyme alcohol dehydrogenase, ADH) and bienzymatic (anchoring both ADH and aldehyde dehydrogenase, AldDH) systems were tested. The amount of ADH deposited onto the Toray (R) paper was 95 ng cm(-2) per bilayer. Kinetic studies revealed that the LbL technique enables better control of enzyme disposition on the bioanode, as compared with the results obtained with the bioanodes prepared by the passive adsorption technique. The power density values achieved for the mono-enzymatic system as a function of the enzyme load ranged from 0.02 to 0.063 mW cm(-2) for the bioanode containing 36 ADH bilayers. The bioanodes containing a gas diffusion layer (GDL) displayed enhanced performance, but their mechanical stability must be improved. The bienzymatic system generated a power density of 0.12 mW cm(-2). In conclusion, the LbL technique is a very attractive approach for enzyme immobilization onto carbon platform, since it enables strict control of enzyme disposition on the bioanode surface with very low enzyme consumption. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the preparation and application of a novel bioanode for use in ethanol/O(2) biofuel cells based upon immobilization of alcohol dehydrogenase (ADH) and polyamidoamine (PAMAM) dendrimers onto carbon cloth platforms. The power density measurements indicated a direct relationship between the amount of anchored ADH and the anode power values, which increased upon enzyme loading. The power density values ranged from 0.04 to 0.28 mW cm(-2), and the highest power density was achieved with the bioanode prepared with 28 U of ADH, which provided a power density of 0.28 mW cm(-2) at 0.3 V. The latter power output values were the maximum observed, even for higher enzyme concentrations. Stability of the bioanodes was quite satisfactory, since there was no appreciable reduction of enzymatic activity during the measurements. The method of bioanode preparation described here has proven to be very effective. The PAMAM dendrimer represents a friendly environment for the immobilization of enzymes, and it is stable and capable of generating high power density compared to other immobilization methods. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work, a fast, non destructive voltammetric method for cocaine detection in acetonitrile medium using a platinum disk electrode chemically modified with cobalt-hexacyanoferrate (CoHCFe) film is described. The deposition of CoHCFe film at platinum disk (working electrode) was carried out in aqueous solution containing NaClO(4) at 0.1 mol L(-1) as supporting electrolite. Stability studies of the film and subsequent voltammetric analysis of cocaine were made in acetonitrile medium with NaClO4 at 0.1 mol L(-1) as supporting electrolite. A reversible interaction between cocaine and CoHCFe at the film produces a proportional decrease of original peak current, due to the formation of a complex between cocaine and cobalt ions, with subsequent partial passivation of the film surface, being the intensity of current decrease used as analytical signal for cocaine. A linear dependence of cocaine detection was carried out in the range from 2.4 x 10 x 4 to 1.5 x 10(-3) mol L(-1), with a linear correlation coefficient of 0.994 and a detection limit of 1.4 x 10 x 4 mol L(-1). The analysis of confiscated samples by the proposed method indicated cocaine levels from 37% to 95% (m/m) and these results were validated by comparison to HPLC technique, being obtained good correlation between both methods. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The electrochemical degradation of different glyphosate herbicide formulations on RuO(2) and IrO(2) DSA(A (R)) electrodes is investigated. Parameters that could influence the formation of organochloride compounds during electrolysis are studied. The effects of chloride concentration, electrodic composition, current density, and electrolysis time are reported. The influence of the oxide composition on herbicide degradation seems to be almost insignificant; however, there is a straight relationship between anode composition and organic halides formation. Commercial herbicide formulations have lower degradation rates and lead to the formation of a larger quantities of organochloride compounds. In high chloride concentrations, there is a significant increase in organic mineralization, and the relationship between chloride concentration and organic halides formation is direct. Only in low chloride medium investigated the organochloride concentration obtained was below the limit values allowed in Brazil. The determination of organic halides absorbable (AOX) during electrolysis increases significantly with the applied current. Even during long-term electrolysis, a large amount of organochloride compounds is formed.
Resumo:
The present work aimed to evaluate the effects of social separation for 14 days (chronic stress) and of withdrawal from a 14-day treatment with diazepam (acute stress) on the exploratory behaviour of male rats in the elevated plus-maze and on serotonin (5-hydroxytryptamine) turnover in different brain structures. Social separation had an anxiogenic effect, evidenced by fewer entries into, and less time spent on the open arms of the elevated plus-maze. Separation also selectively increased 5-hydroxytryptamine turnover in the hippocampus and median raphe nucleus. Diazepam withdrawal had a similar anxiogenic effect in grouped animals and increased 5-hydroxytryptamine turnover in the same brain structures. Chronic treatment with imipramine during the 14 days of separation prevented the behavioural and neurochemical changes caused by social separation. It is suggested that the increase in anxiety determined by both acute and chronic stress is mediated by the activation of the median raphe nucleus-hippocampal 5-hydroxytryptamine pathway.
Effect of estradiol benzoate microinjection into the median raphe nucleus on contextual conditioning
Resumo:
Estrogen deficiency has been associated with stress, anxiety and depression. Estrogen receptors have been identified in the median raphe nucleus (MRN). This structure is the main source of serotonergic projections to the hippocampus, a forebrain area implicated in the regulation of defensive responses and in the resistance to chronic stress. There is reported evidence indicating that estrogen modulates 5-HT(1A) receptor function. In the MRN, somatodendritic 5-HT(1A) receptors control the activity of serotonergic neurones by negative feedback. The present study has evaluated the effect of intra-MRN injection of estradiol benzoate (EB, 600 or 1200 ng/0.2 mu l) on the performance of ovariectormized rats submitted to contextual conditioning. Additionally, the same treatment was given after intra-MRN injection of Way 100635 (100 ng/0.2 mu l). a 5-HT(1A) receptor antagonist. Both doses of EB decreased freezing and increased rearing, indicating an anxiolytic effect. Pretreatment with Way 100635 antagonized the anxiolytic effect of estradiol. On the basis of these results, it may be suggested that estrogens modulate anxiety by acting on 5-HT(1A) receptors localized in the MRN. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Solid-state fermentation obtained from different and low-cost carbon sources was evaluated to endocellulases and endoxylanases production by Aspergillus japonicus C03. Regarding the enzymatic production the highest levels were observed at 30 degrees C, using soy bran added to crushed corncob or wheat bran added to sugarcane bagasse, humidified with salt solutions, and incubated for 3 days (xylanase) or 6 days (cellulase) with 70% relative humidity. Peptone improved the xylanase and cellulase activities in 12 and 29%, respectively. The optimum temperature corresponded to 60 degrees C and 50-55 degrees C for xylanase and cellulase, respectively, both having 4.0 as optimum pH. Xylanase was fully stable up to 40 degrees C, which is close to the rumen temperature. The enzymes were stable in pH 4.0-7.0. Cu(++) and Mn(++) increased xylanase and cellulase activities by 10 and 64%, respectively. A. japonicus C03 xylanase was greatly stable in goat rumen fluid for 4 h during in vivo and in vitro experiments.