973 resultados para Tight coupling
Resumo:
This work contains several applications of the mode-coupling theory (MCT) and is separated into three parts. In the first part we investigate the liquid-glass transition of hard spheres for dimensions d→∞ analytically and numerically up to d=800 in the framework of MCT. We find that the critical packing fraction ϕc(d) scales as d²2^(-d), which is larger than the Kauzmann packing fraction ϕK(d) found by a small-cage expansion by Parisi and Zamponi [J. Stat. Mech.: Theory Exp. 2006, P03017 (2006)]. The scaling of the critical packing fraction is different from the relation ϕc(d)∼d2^(-d) found earlier by Kirkpatrick and Wolynes [Phys. Rev. A 35, 3072 (1987)]. This is due to the fact that the k dependence of the critical collective and self nonergodicity parameters fc(k;d) and fcs(k;d) was assumed to be Gaussian in the previous theories. We show that in MCT this is not the case. Instead fc(k;d) and fcs(k;d), which become identical in the limit d→∞, converge to a non-Gaussian master function on the scale k∼d^(3/2). We find that the numerically determined value for the exponent parameter λ and therefore also the critical exponents a and b depend on the dimension d, even at the largest evaluated dimension d=800. In the second part we compare the results of a molecular-dynamics simulation of liquid Lennard-Jones argon far away from the glass transition [D. Levesque, L. Verlet, and J. Kurkijärvi, Phys. Rev. A 7, 1690 (1973)] with MCT. We show that the agreement between theory and computer simulation can be improved by taking binary collisions into account [L. Sjögren, Phys. Rev. A 22, 2866 (1980)]. We find that an empiric prefactor of the memory function of the original MCT equations leads to similar results. In the third part we derive the equations for a mode-coupling theory for the spherical components of the stress tensor. Unfortunately it turns out that they are too complex to be solved numerically.
Resumo:
Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortalityrnafter traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be importantrnto elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonularnoccludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anestheticsrnsevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER) inrnmurine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression ofrnZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled corticalrnimpact (CCI). In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours afterrnexposure. In BBB co-cultures mimicking the neurovascular unit (NVU) volatile anesthetics had no impact on TEER. In healthyrnmice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water contentrnincreased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expressionrnwas significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analysesrnrevealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The studyrndemonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed tornmodulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence thernbarrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Futurernresearch is required to investigate adverse or beneficial effects of volatile anesthetics on patients at risk for cerebral edema.
Resumo:
In dieser Arbeit wurden Simulation von Flüssigkeiten auf molekularer Ebene durchgeführt, wobei unterschiedliche Multi-Skalen Techniken verwendet wurden. Diese erlauben eine effektive Beschreibung der Flüssigkeit, die weniger Rechenzeit im Computer benötigt und somit Phänomene auf längeren Zeit- und Längenskalen beschreiben kann.rnrnEin wesentlicher Aspekt ist dabei ein vereinfachtes (“coarse-grained”) Modell, welches in einem systematischen Verfahren aus Simulationen des detaillierten Modells gewonnen wird. Dabei werden ausgewählte Eigenschaften des detaillierten Modells (z.B. Paar-Korrelationsfunktion, Druck, etc) reproduziert.rnrnEs wurden Algorithmen untersucht, die eine gleichzeitige Kopplung von detaillierten und vereinfachten Modell erlauben (“Adaptive Resolution Scheme”, AdResS). Dabei wird das detaillierte Modell in einem vordefinierten Teilvolumen der Flüssigkeit (z.B. nahe einer Oberfläche) verwendet, während der Rest mithilfe des vereinfachten Modells beschrieben wird.rnrnHierzu wurde eine Methode (“Thermodynamische Kraft”) entwickelt um die Kopplung auch dann zu ermöglichen, wenn die Modelle in verschiedenen thermodynamischen Zuständen befinden. Zudem wurde ein neuartiger Algorithmus der Kopplung beschrieben (H-AdResS) der die Kopplung mittels einer Hamilton-Funktion beschreibt. In diesem Algorithmus ist eine zur Thermodynamischen Kraft analoge Korrektur mit weniger Rechenaufwand möglich.rnrnAls Anwendung dieser grundlegenden Techniken wurden Pfadintegral Molekulardynamik (MD) Simulationen von Wasser untersucht. Mithilfe dieser Methode ist es möglich, quantenmechanische Effekte der Kerne (Delokalisation, Nullpunktsenergie) in die Simulation einzubeziehen. Hierbei wurde zuerst eine Multi-Skalen Technik (“Force-matching”) verwendet um eine effektive Wechselwirkung aus einer detaillierten Simulation auf Basis der Dichtefunktionaltheorie zu extrahieren. Die Pfadintegral MD Simulation verbessert die Beschreibung der intra-molekularen Struktur im Vergleich mit experimentellen Daten. Das Modell eignet sich auch zur gleichzeitigen Kopplung in einer Simulation, wobei ein Wassermolekül (beschrieben durch 48 Punktteilchen im Pfadintegral-MD Modell) mit einem vereinfachten Modell (ein Punktteilchen) gekoppelt wird. Auf diese Weise konnte eine Wasser-Vakuum Grenzfläche simuliert werden, wobei nur die Oberfläche im Pfadintegral Modell und der Rest im vereinfachten Modell beschrieben wird.
Resumo:
A growing interest towards new sources of energy has led in recent years to the development of a new generation of catalysts for alcohol dehydrogenative coupling (ADC). This green, atom-efficient reaction is capable of turning alcohol derivatives into higher value and chemically more attractive ester molecules, and it finds interesting applications in the transformation of the large variety of products deriving from biomass. In the present work, a new series of ruthenium-PNP pincer complexes are investigated for the transformation of 1-butanol, one of the most challenging substrates for this type of reactions, into butyl butyrate, a short-chain symmetrical ester widely used in flavor industries. Since the reaction kinetics depends on hydrogen diffusion, the study aimed at identifying proper reactor type and right catalyst concentration to avoid mass transfer interferences and to get dependable data. A comparison between catalytic activities and productivities has been made to establish the role of the different ligands bonded both to the PNP binder and to the ruthenium metal center, and hence to find the best catalyst for this type of reaction.
Resumo:
The human airway epithelium serves as structural and functional barrier against inhaled particulate antigen. Previously, we demonstrated in an in vitro epithelial barrier model that monocyte derived dendritic cells (MDDC) and monocyte derived macrophages (MDM) take up particulate antigen by building a trans-epithelial interacting network. Although the epithelial tight junction (TJ) belt was penetrated by processes of MDDC and MDM, the integrity of the epithelium was not affected. These results brought up two main questions: (1) Do MDM and MDDC exchange particles? (2) Are those cells expressing TJ proteins, which are believed to interact with the TJ belt of the epithelium to preserve the epithelial integrity? The expression of TJ and adherens junction (AJ) mRNA and proteins in MDM and MDDC monocultures was determined by RT-PCR, and immunofluorescence, respectively. Particle uptake and exchange was quantified by flow cytometry and laser scanning microscopy in co-cultures of MDM and MDDC exposed to polystyrene particles (1 μm in diameter). MDM and MDDC constantly expressed TJ and AJ mRNA and proteins. Flow cytometry analysis of MDM and MDDC co-cultures showed increased particle uptake in MDDC while MDM lost particles over time. Quantitative analysis revealed significantly higher particle uptake by MDDC in co-cultures of epithelial cells with MDM and MDDC present, compared to co-cultures containing only epithelial cells and MDDC. We conclude from these findings that MDM and MDDC express TJ and AJ proteins which could help to preserve the epithelial integrity during particle uptake and exchange across the lung epithelium.
Resumo:
Ice core evidence indicates that even though atmospheric CO2 concentrations did not exceed ~300 ppm at any point during the last 800 000 years, East Antarctica was at least ~3–4 °C warmer than preindustrial (CO2~280 ppm) in each of the last four interglacials. During the previous three interglacials, this anomalous warming was short lived (~3000 years) and apparently occurred before the completion of Northern Hemisphere deglaciation. Hereafter, we refer to these periods as "Warmer than Present Transients" (WPTs). We present a series of experiments to investigate the impact of deglacial meltwater on the Atlantic Meridional Overturning Circulation (AMOC) and Antarctic temperature. It is well known that a slowed AMOC would increase southern sea surface temperature (SST) through the bipolar seesaw and observational data suggests that the AMOC remained weak throughout the terminations preceding WPTs, strengthening rapidly at a time which coincides closely with peak Antarctic temperature. We present two 800 kyr transient simulations using the Intermediate Complexity model GENIE-1 which demonstrate that meltwater forcing generates transient southern warming that is consistent with the timing of WPTs, but is not sufficient (in this single parameterisation) to reproduce the magnitude of observed warmth. In order to investigate model and boundary condition uncertainty, we present three ensembles of transient GENIE-1 simulations across Termination II (135 000 to 124 000 BP) and three snapshot HadCM3 simulations at 130 000 BP. Only with consideration of the possible feedback of West Antarctic Ice Sheet (WAIS) retreat does it become possible to simulate the magnitude of observed warming.
Resumo:
Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20\% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning.
Resumo:
We explore the nature of the bulk transition observed at strong coupling in the SU(3) gauge theory with Nf=12 fermions in the fundamental representation. The transition separates a weak coupling chirally symmetric phase from a strong coupling chirally broken phase and is compatible with the scenario where conformality is restored by increasing the flavour content of a non abelian gauge theory. We explore the intriguing possibility that the observed bulk transition is associated with the occurrence of an ultraviolet fixed point (UVFP) at strong coupling, where a new theory emerges in the continuum.
Resumo:
The synthesis of cyclic polystyrene (Pst) with an alkoxyamine functionality has been accomplished by intramolecular radical coupling in the presence of a nitroso radical trap Linear alpha,omega-dibrominated polystyrene, produced by the atom transfer radical polymerization (ATRP) of styrene using a dibrominated initiator, was subjected to chain-end activation via the atom transfer radical coupling (ATRC) process under pseudodilute conditions in the presence of 2-methyl-2-nitrosopropane (MNP). This radical trap-assisted, intramolecular ATRC (RTA-ATRC) produced cyclic polymers in greater than 90% yields possessing < G > values in the 0.8-0.9 range as determined by gel permeation chromatography (GPC). Thermal-induced opening of the cycles, made possible by the incorporated alkoxyamine, resulted in a return to the original apparent molecular weight, further supporting the formation of cyclic polymers in the RTA-ATRC reaction. Liquid chromatography-mass spectrometry (LC-MS) provided direct confirmation of the cyclic architecture and the incorporation of the nitroso group into the macrocycle RTA-ATRC cyclizations carried out with faster rates of polymer addition into the redox active solution and/or in the presence of a much larger excess of MNP (up to a 250:1 ratio of MNP:C-Br chain end) still yielded cyclic polymers that contained alkoxyamine functionality.