994 resultados para Thyroid Gland -- drug effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Sulfate and phosphate are both vital macronutrients required for plant growth and development. Despite evidence for interaction between sulfate and phosphate homeostasis, no transcriptional factor has yet been identified in higher plants that affects, at the gene expression and physiological levels, the response to both elements. This work was aimed at examining whether PHR1, a transcription factor previously shown to participate in the regulation of genes involved in phosphate homeostasis, also contributed to the regulation and activity of genes involved in sulfate inter-organ transport. Results: Among the genes implicated in sulfate transport in Arabidopsis thaliana, SULTR1;3 and SULTR3;4 showed up-regulation of transcripts in plants grown under phosphate-deficient conditions. The promoter of SULTR1;3 contains a motif that is potentially recognizable by PHR1. Using the phr1 mutant, we showed that SULTR1;3 up regulation following phosphate deficiency was dependent on PHR1. Furthermore, transcript up regulation was found in phosphate-deficient shoots of the phr1 mutant for SULTR2;1 and SULTR3;4, indicating that PHR1 played both a positive and negative role on the expression of genes encoding sulfate transporters. Importantly, both phr1 and sultr1;3 mutants displayed a reduction in their sulfate shoot-to-root transfer capacity compared to wild-type plants under phosphate-deficient conditions. Conclusions: This study reveals that PHR1 plays an important role in sulfate inter-organ transport, in particular on the regulation of the SULTR1;3 gene and its impact on shoot-to-root sulfate transport in phosphate-deficient plants. PHR1 thus contributes to the homeostasis of both sulfate and phosphate in plants under phosphate deficiency. Such a function is also conserved in Chlamydomonas reinhardtii via the PHR1 ortholog PSR1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waddlia chondrophila is an emerging cause of miscarriage in bovines and humans. Given the strict intracellular growth of this Chlamydia-like organism, its antibiotic susceptibility was tested by amoebal coculture, cell culture, and real-time PCR. W. chondrophila was susceptible to doxycycline and azithromycin but resistant to beta-lactams and fluoroquinolones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasticity of mature oligodendrocytes was studied in aggregating brain cell cultures at the period of maximal expression of myelin marker proteins. The protein kinase C (PKC)-activating tumor promoters mezerein and phorbol 12-myristate 13-acetate (PMA), but not the inactive phorbol ester analog 4alpha-PMA, caused a pronounced decrease of myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) activity. In contrast, myelin/oligodendrocyte protein (MOG) content was affected relatively little. Northern blot analyses showed a rapid reduction of MBP and PLP gene expression induced by mezerein, and both morphological and biochemical findings indicate a drastic loss of compact myelin. During the acute phase of demyelination, only a relatively small increase in cell death was perceptible by in situ end labeling and in situ nick translation. Basic fibroblast growth factor (bFGF) also reduced the levels of the oligodendroglial differentiation markers and enhanced the demyelinating effects of the tumor promoters. The present results suggest that PKC activation resulted in severe demyelination and partial loss of the oligodendrocyte-differentiated phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES/HYPOTHESIS: Facial nerve regeneration is limited in some clinical situations: in long grafts, by aged patients, and when the delay between nerve lesion and repair is prolonged. This deficient regeneration is due to the limited number of regenerating nerve fibers, their immaturity and the unresponsiveness of Schwann cells after a long period of denervation. This study proposes to apply glial cell line-derived neurotrophic factor (GDNF) on facial nerve grafts via nerve guidance channels to improve the regeneration. METHODS: Two situations were evaluated: immediate and delayed grafts (repair 7 months after the lesion). Each group contained three subgroups: a) graft without channel, b) graft with a channel without neurotrophic factor; and c) graft with a GDNF-releasing channel. A functional analysis was performed with clinical observation of facial nerve function, and nerve conduction study at 6 weeks. Histological analysis was performed with the count of number of myelinated fibers within the graft, and distally to the graft. Central evaluation was assessed with Fluoro-Ruby retrograde labeling and Nissl staining. RESULTS: This study showed that GDNF allowed an increase in the number and the maturation of nerve fibers, as well as the number of retrogradely labeled neurons in delayed anastomoses. On the contrary, after immediate repair, the regenerated nerves in the presence of GDNF showed inferior results compared to the other groups. CONCLUSIONS: GDNF is a potent neurotrophic factor to improve facial nerve regeneration in grafts performed several months after the nerve lesion. However, GDNF should not be used for immediate repair, as it possibly inhibits the nerve regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the activity of linezolid, alone and in combination with rifampin (rifampicin), against a methicillin-resistant Staphylococcus aureus (MRSA) strain in vitro and in a guinea pig model of foreign-body infection. The MIC, minimal bactericidal concentration (MBC) in logarithmic phase, and MBC in stationary growth phase were 2.5, >20, and >20 microg/ml, respectively, for linezolid; 0.01, 0.08, and 2.5 microg/ml, respectively, for rifampin; and 0.16, 0.63, >20 microg/ml, respectively, for levofloxacin. In time-kill studies, bacterial regrowth and the development of rifampin resistance were observed after 24 h with rifampin alone at 1x or 4x the MIC and were prevented by the addition of linezolid. After the administration of single intraperitoneal doses of 25, 50, and 75 mg/kg of body weight, linezolid peak concentrations of 6.8, 12.7, and 18.1 microg/ml, respectively, were achieved in sterile cage fluid at approximately 3 h. The linezolid concentration remained above the MIC of the test organism for 12 h with all doses. Antimicrobial treatments of animals with cage implant infections were given twice daily for 4 days. Linezolid alone at 25, 50, and 75 mg/kg reduced the planktonic bacteria in cage fluid during treatment by 1.2 to 1.7 log(10) CFU/ml; only linezolid at 75 mg/kg prevented bacterial regrowth 5 days after the end of treatment. Linezolid used in combination with rifampin (12.5 mg/kg) was more effective than linezolid used as monotherapy, reducing the planktonic bacteria by >or=3 log(10) CFU (P < 0.05). Efficacy in the eradication of cage-associated infection was achieved only when linezolid was combined with rifampin, with cure rates being between 50% and 60%, whereas the levofloxacin-rifampin combination demonstrated the highest cure rate (91%) against the strain tested. The linezolid-rifampin combination is a treatment option for implant-associated infections caused by quinolone-resistant MRSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Although endogenous nitric oxide (NO) is an excitatory mediator in the central nervous system, inhaled NO is not considered to cause neurologic side effects because of its short half-life. This study was motivated by a recent case report about neurologic symptoms and our own observation of severe electroencephalogram (EEG) abnormalities during NO inhalation. DESIGN: Blind, retrospective analyses of EEGs which were registered before, during, and after NO inhalation. EEG was classified in a 5-point rating system by an independent electroencephalographer who was blinded to the patients' clinical histories. Comparisons were made with the previous evaluation documented at recording. Other EEG-influencing parameters such as oxygen saturation, hemodynamics, electrolytes, and pH were evaluated. SETTING: Pediatric intensive care unit of a tertiary care university children's hospital. PATIENTS: Eleven ventilated, long-term paralyzed, sedated children (1 mo to 14 yrs) who had EEG or clinical assessment before NO treatment and EEG during NO inhalation. They were divided into two groups according to the NO-indication (e.g., congenital heart defect, acute respiratory distress syndrome). MEASUREMENTS AND MAIN RESULTS: All 11 patients had an abnormal EEG during NO inhalation. EEG-controls without NO showed remarkable improvement. EEG abnormalities were background slowing, low voltage, suppression burst (n = 2), and sharp waves (n = 2) independent of patients' age, NO-indication, and other EEG-influencing parameters. CONCLUSIONS: These preliminary data suggest the occurrence of EEG-abnormalities after application of inhaled NO in critically ill children. We found no correlation with other potential EEG-influencing parameters, although clinical state, medication, or hypoxemia might contribute. Comprehensive, prospective, clinical assessment regarding a causal relationship between NO-inhalation and EEG-abnormalities and their clinical importance is needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Intravitreal neovascular diseases, as in ischemic retinopathies, are a major cause of blindness. Because inflammatory mechanisms influence vitreal neovascularization and cyclooxygenase (COX)-2 promotes tumor angiogenesis, we investigated the role of COX-2 in ischemic proliferative retinopathy. METHODS AND RESULTS: We describe here that COX-2 is induced in retinal astrocytes in human diabetic retinopathy, in the murine and rat model of ischemic proliferative retinopathy in vivo, and in hypoxic astrocytes in vitro. Specific COX-2 but not COX-1 inhibitors prevented intravitreal neovascularization, whereas prostaglandin E2, mainly via its prostaglandin E receptor 3 (EP3), exacerbated neovascularization. COX-2 inhibition induced an upregulation of thrombospondin-1 and its CD36 receptor, consistent with the observed antiangiogenic effects of COX-2 inhibition; EP3 stimulation reversed effects of COX-2 inhibitors on thrombospondin-1 and CD36. CONCLUSIONS: These findings point to an important role for COX-2 in ischemic proliferative retinopathy, as in diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astrocytes actively participate in synaptic integration by releasing transmitter (glutamate) via a calcium-regulated, exocytosis-like process. Here we show that this process follows activation of the receptor CXCR4 by the chemokine stromal cell-derived factor 1 (SDF-1). An extraordinary feature of the ensuing signaling cascade is the rapid extracellular release of tumor necrosis factor-alpha (TNFalpha). Autocrine/paracrine TNFalpha-dependent signaling leading to prostaglandin (PG) formation not only controls glutamate release and astrocyte communication, but also causes their derangement when activated microglia cooperate to dramatically enhance release of the cytokine in response to CXCR4 stimulation. We demonstrate that altered glial communication has direct neuropathological consequences and that agents interfering with CXCR4-dependent astrocyte-microglia signaling prevent neuronal apoptosis induced by the HIV-1 coat glycoprotein, gp120IIIB. Our results identify a new pathway for glia-glia and glia-neuron communication that is relevant to both normal brain function and neurodegenerative diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcriptional cycling of activated glucocorticoid receptor (GR) and ultradian glucocorticoid secretion are well established processes. Ultradian hormone release is now shown to result in pulsatile gene transcription through dynamic exchange of GR with the target-gene promoter and GR cycling through the chaperone machinery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the workshop "Do Peroxisome Proliferating Compounds Pose a Hepatocarcinogenic Hazard to Humans?" was to provide a review of the current state of the science on the relationship between peroxisome proliferation and hepatocarcinogenesis. There has been much debate regarding the mechanism by which peroxisome proliferators may induce liver tumors in rats and mice and whether these events occur in humans. A primary goal of the workshop was to determine where consensus might be reached regarding the interpretation of these data relative to the assessment of potential human risks. A core set of biochemical and cellular events has been identified in the rodent strains that are susceptible to the hepatocarcinogenic effects of peroxisome proliferators, including peroxisome proliferation, increases in fatty acyl-CoA oxidase levels, microsomal fatty acid oxidation, excess production of hydrogen peroxide, increases in rates of cell proliferation, and expression and activation of the alpha subtype of the peroxisome proliferator-activated receptor (PPAR-alpha). Such effects have not been identified clinically in liver biopsies from humans exposed to peroxisome proliferators or in in vitro studies with human hepatocytes, although PPAR-alpha is expressed at a very low level in human liver. Consensus was reached regarding the significant intermediary roles of cell proliferation and PPAR-alpha receptor expression and activation in tumor formation. Information considered necessary for characterizing a compound as a peroxisome proliferating hepatocarcinogen include hepatomegaly, enhanced cell proliferation, and an increase in hepatic acyl-CoA oxidase and/or palmitoyl-CoA oxidation levels. Given the lack of genotoxic potential of most peroxisome proliferating agents, and since humans appear likely to be refractive or insensitive to the tumorigenic response, risk assessments based on tumor data may not be appropriate. However, nontumor data on intermediate endpoints would provide appropriate toxicological endpoints to determine a point of departure such as the LED10 or NOAEL which would be the basis for a margin-of-exposure (MOE) risk assessment approach. Pertinent factors to be considered in the MOE evaluation would include the slope of the dose-response curve at the point of departure, the background exposure levels, and variability in the human response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Azithromycin at clinically relevant doses does not inhibit planktonic growth of the opportunistic pathogen Pseudomonas aeruginosa but causes markedly reduced formation of biofilms and quorum-sensing-regulated extracellular virulence factors. In the Gac/Rsm signal transduction pathway, which acts upstream of the quorum-sensing machinery in P. aeruginosa, the GacA-dependent untranslated small RNAs RsmY and RsmZ are key regulatory elements. As azithromycin treatment and mutational inactivation of gacA have strikingly similar phenotypic consequences, the effect of azithromycin on rsmY and rsmZ expression was investigated. In planktonically growing cells, the antibiotic strongly inhibited the expression of both small RNA genes but did not affect the expression of the housekeeping gene proC. The azithromycin treatment resulted in reduced expression of gacA and rsmA, which are known positive regulators of rsmY and rsmZ, and of the PA0588-PA0584 gene cluster, which was discovered as a novel positive regulatory element involved in rsmY and rsmZ expression. Deletion of this cluster resulted in diminished ability of P. aeruginosa to produce pyocyanin and to swarm. The results of this study indicate that azithromycin inhibits rsmY and rsmZ transcription indirectly by lowering the expression of positive regulators of these small RNA genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neuronal monocarboxylate transporter, MCT2, is not only an energy substrate carrier but it is also purported to be a binding partner for the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit. To unravel a putative role of MCT2 in the regulation of GluR2 subcellular distribution, Neuro2A cells and primary cultures of mouse cortical neurons were co-transfected with plasmids containing sequences to express the fluorescent proteins mStrawberry (mStb)-fused MCT2 and Venus-fused GluR2. Subsequently, their subcellular distribution was visualized by fluorescence microscopy. GluR2 was led to form perinuclear and dendritic clusters together with MCT2 when co-transfected in Neuro2A cells or in neurons, following the original distribution of MCT2. MCT2 co-transfection had no effect on the intracellular distribution of several other post-synaptic proteins, although it partially affected the intracellular distribution of GluR1 similarly to GluR2. Both cell surface and total protein expression levels of GluR2 were significantly reduced by co-expression with MCT2. Finally, partial perinuclear and dendritic co-localization between MCT2 and Rab8, a member of the small GTPase family involved in membrane trafficking of AMPA receptors, was also observed in co-transfected neurons. These results suggest that MCT2 could influence AMPA receptor trafficking within neurons by modulating GluR2 sorting between different subcellular compartments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arenaviruses are enveloped RNA viruses with a nonlytic life cycle that cause acute and persistent infections. Here, we investigated the role of the host cell's unfolded protein response (UPR) in infection of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). In mammalian cells, the endoplasmic reticulum (ER) chaperone protein GRP78/BiP functions as the principal sensor for the induction of the UPR and interacts with three mediators: kinase/endonuclease inositol-requiring protein 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Acute infection with LCMV resulted in a selective induction of the ATF6-regulated branch of the UPR, whereas pathways controlled by PERK and IRE1 were neither activated nor blocked. Expression of individual LCMV proteins revealed that the viral glycoprotein precursor (GPC), but not that of other viral proteins, was responsible for the induction of ATF6. Rapid downregulation of the viral GPC during transition from acute to persistent LCMV infection restored basal levels of UPR signaling. To address a possible role of ATF6 signaling in LCMV infection, we used cells deficient in site 2 protease (S2P), a metalloprotease required for the activation of ATF6. Cells deficient in S2P showed significantly lower levels of production of infectious virus during acute but not persistent infection, indicating a requirement for ATF6-mediated signaling for optimal virus multiplication. In summary, acute LCMV infection seems to selectively induce the ATF6-regulated branch of the UPR that is likely beneficial for virus replication and cell viability, but it avoids induction of PERK and IRE1, whose activation may be detrimental for virus and the host cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: This study sought to investigate abnormalities in coronary circulatory function in 2 different disease entities of obese (OB) and morbidly obese (MOB) individuals and to evaluate whether these would differ in severity with different profiles of endocannabinoids, leptin, and C-reactive protein (CRP) plasma levels. BACKGROUND: There is increasing evidence that altered plasma levels of endocannabinoids, leptin, and CRP may affect coronary circulatory function in OB and MOB. METHODS: Myocardial blood flow (MBF) responses to cold pressor test from rest and during pharmacologically induced hyperemia were measured with N-13 ammonia positron emission tomography/computed tomography. Study participants (n = 111) were divided into 4 groups based on their body mass index (BMI) (kg/m(2)): 1) control group (BMI: 20 to 24.9, n = 30); 2) overweight group (BMI: 25 to 29.9, n = 31), 3) OB group (BMI: 30 to 39.9, n = 25); and 4) MOB group (BMI ≥40, n = 25). RESULTS: The cold pressor test-induced change in endothelium-related MBF response (ΔMBF) progressively declined in overweight and OB groups when compared with the control group [median: 0.19 (interquartile range [IQR] 0.08, 0.27) and 0.11 (0.03, 0.17) vs. 0.27 (0.23, 0.38) ml/g/min; p ≤ 0.01, respectively], whereas it did not differ significantly between OB and MOB groups [median: 0.11 (IQR: 0.03, 0.17) and 0.09 (-0.01, 0.19) ml/g/min; p = 0.93]. Compared with control subjects, hyperemic MBF subjects comparably declined in the overweight, OB, and MOB groups [median: 2.40 (IQR 1.92, 2.63) vs. 1.94 (1.65, 2.30), 2.05 (1.67, 2.38), and 2.14 (1.78, 2.76) ml/g/min; p ≤ 0.05, respectively]. In OB individuals, ΔMBF was inversely correlated with increase in endocannabinoid anandamide (r = -0.45, p = 0.044), but not with leptin (r = -0.02, p = 0.946) or with CRP (r = -0.33, p = 0.168). Conversely, there was a significant and positive correlation among ΔMBF and elevated leptin (r = 0.43, p = 0.031) and CRP (r = 0.55, p = 0.006), respectively, in MOB individuals that was not observed for endocannabinoid anandamide (r = 0.07, p = 0.740). CONCLUSIONS: Contrasting associations of altered coronary endothelial function with increases in endocannabinoid anandamide, leptin, and CRP plasma levels identify and characterize OB and MOB as different disease entities affecting coronary circulatory function.