983 resultados para TRANSCRIPTIONAL CONTROL
Resumo:
We evaluated the associations between glycemic therapies and prevalence of diabetic peripheral neuropathy (DPN) at baseline among participants in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial on medical and revascularization therapies for coronary artery disease (CAD) and on insulin-sensitizing vs. insulin-providing treatments for diabetes. A total of 2,368 patients with type 2 diabetes and CAD was evaluated. DPN was defined as clinical examination score > 2 using the Michigan Neuropathy Screening Instrument (MNSI). DPN odds ratios across different groups of glycemic therapy were evaluated by multiple logistic regression adjusted for multiple covariates including age, sex, hemoglobin A1c (HbA1c), and diabetes duration. Fifty-one percent of BARI 2D subjects with valid baseline characteristics and MNSI scores had DPN. After adjusting for all variables, use of insulin was significantly associated with DPN (OR = 1.57, 95% CI: 1.15-2.13). Patients on sulfonylurea (SU) or combination of SU/metformin (Met)/thiazolidinediones (TZD) had marginally higher rates of DPN than the Met/TZD group. This cross-sectional study in a cohort of patients with type 2 diabetes and CAD showed association of insulin use with higher DPN prevalence, independent of disease duration, glycemic control, and other characteristics. The causality between a glycemic control strategy and DPN cannot be evaluated in this cross-sectional study, but continued assessment of DPN and randomized therapies in BARI 2D trial may provide further explanations on the development of DPN.
Resumo:
An 18-year-old boy with refractory epilepsy and aggressiveness associated to a hypothalamic hamartoma was submitted to a stereotactically guided lesion by thermocoagulation. The target was based on magnetic resonance (MR) images merged with computed tomography scan images taken on the day of surgery while patient was on a stereotactic frame. In order to reveal structures not discernible in MR images, the Schaltenbrand digital brain atlas was merged onto the patient`s images. Target and trajectory of the depth electrode were chosen based on three-dimensional imaging reconstructions. A surgical plan was devised to disconnect the hypothalamic hamartoma from the hypothalamus, medial forebrain bundle, fasciculus princeps, and dorsal longitudinal fasciculus. Our target was placed at the inferior portion of the posterolateral component of the hamartoma, bordering the normal hypothalamus. The patient evolved with marked lessening of aggressiveness. Seizure frequency was reduced from several seizures per day to less than one tonic-clonic seizure during sleep per month and only two episodes suggestive of partial complex seizures during daytime. These results have remained consistent over a 24-month postoperative follow-up. Functional neuroanatomy of hypothalamic connections involved in seizure propagation and aggressive behavior was reviewed.
Resumo:
Myb is a key transcription factor that can regulate proliferation, differentiation, and apoptosis, predominantly in the haemopoietic system. Abnormal expression of Myb is associated with a number of cancers, both haemopoietic and non-haemopoietic. In order to better understand the role of Myb in normal and tumorigenic processes, we undertook a cDNA array screen to identify genes that are regulated by this factor. In this way, we identified the gene encoding vascular endothelial growth factor (VEGF) as being potentially regulated by the Myb oncoprotein in myeloid cells. To determine whether this was a direct effect on VEGF gene transcription, we examined the activity of the murine VEGF promoter in the presence of either wild-type (WT) or mutant forms of Myb. It was found that WT Myb was able to activate the VEGF promoter and that a minimal promoter region of 120 bp was sufficient to confer Myb responsiveness. Surprisingly, activation of the VEGF promoter was independent of DNA binding by Myb. This was shown by the use of DNA binding-defective Myb mutants and by mutagenesis of a potential Myb-binding site in the minimal promoter. Mutation of Sp1 sites within this region abolished Myb-mediated regulation of a reporter construct, suggesting that Myb DNA binding-independent activation of VEGF expression occurs via these Sp1 binding elements. Regulation of VEGF production by Myb has implications for the potential role of Myb in myeloid leukaemias and in solid tumours where VEGF may be functioning as an autocrine growth factor. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Prophylactic vaccines for genital human papillomavirus (HPV) infection have been shown to be feasible in animal models, and suitable vaccine material based on virus-like particles can be produced in bulk at reasonable cost. Initiation of phase III clinical trials will follow definition of trial outcome measures through further epidemiological studies, and development-of assays of host protective immunity. Vaccines could in principle eliminate HPV-related disease, as the human race is the only natural host for the relevant papillomaviruses (PVs). Therapeutic vaccines for genital HPV infection are also possible, but have not yet been demonstrated as feasible in practice because the choice of vaccine antigens is difficult, the method of their optimal delivery is uncertain, and the nature of the relevant antiviral immunity is unknown. PV species specificity will require trials to be conducted in man, which will slow definition of an ideal vaccine.
Resumo:
This study analyzes the relationship between extracellular purines and pain perception in humans. Cerebrospinal fluid (CSF) levels of purines and their metabolites were compared between patients displaying acute and/or chronic pain syndromes and control subjects. The CSF levels of IMP, inosine, guanosine and uric acid were significantly increased in the chronic pain group and correlated with pain severity (P<0.05). Patients displaying both chronic and acute pain presented similar changes in the CSF purines concentration (P<0.05). However, in the acute pain group, only CSF inosine and uric acid levels were significantly increased (P<0.05). These findings suggest that purines, in special inosine, guanosine and uric acid, are associated with the spinal mechanisms underlying nociception. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A simple framework was used to analyse the determinants of potential yield of sunflower (Helianthus annuus L.) in a subtropical environment. The aim was to investigate the stability of the determinants crop duration, canopy light interception, radiation use efficiency (RUE), and harvest index (HI) at 2 sowing times and with 3 genotypes differing in crop maturity and stature. Crop growth, phenology, light interception, yield, prevailing temperature, and radiation were recorded and measured throughout the crop cycle. Significant differences in grain yield were found between the 2 sowings, but not among genotypes within each sowing. Mean yields (0% moisture) were 6 . 02 and 2 . 17 t/ha for the first sowing, on 13 September (S1), and the second sowing, on 5 March (S2), respectively. Exceptionally high yields in S1 were due to high biomass assimilation associated with the high radiation environment, high light interception owing to a greater leaf area index, and high RUE (1 . 47-1 . 62 g/MJ) across genotypes. It is proposed that the high RUE was caused by high levels of available nitrogen maintained during crop growth by frequent applications of fertiliser and sewage effluent as irrigation. In addition to differences in the radiation environment, the assimilate partitioned to grain was reduced in S2 associated with a reduction in the duration of grain-filling. Harvest index was 0 . 40 in S1 and 0 . 25 in S2. It is hypothesised that low minimum temperatures experienced in S2 reduced assimilate production and partitioning, causing premature maturation.
Resumo:
Context: Necdin activates GNRH gene expression and is fundamental for the development, migration, and axonal extension of murine GNRH neurons. In humans, necdin plays a potential role in the hypogonadotropic hypogonadism phenotype in patients with Prader-Willi syndrome. Aim: To investigate necdin gene (NDN) variants in patients with isolated hypogonadotropic hypogonadism (IHH). Patients and methods: We studied 160 Brazilian patients with IHH, which includes 92 with Kallmann syndrome and 68 with normosmic IHH. Genomic DNA was extracted and the single NDN exon was amplified and sequenced. To measure GNRH transcriptional activity, luciferase reporter plasmids containing GNRH regulatory regions were transiently transfected into GT1-7 cells in the presence and absence of overexpressed wild-type or mutant necdin. Results: A heterozygous variant of necdin, p.V318A, was identified in a 23-year-old male with Kallmann syndrome. The p.V318A was also present in affected aunt and his father and was absent in 100 Brazilian control subjects. Previous FGFR1 gene analysis revealed a missense mutation (p.P366L) in this family. Functional studies revealed a minor difference in the activation of GNRH transcription by mutant protein compared with wild type in that a significant impairment of the necdin protein activity threshold was observed. Conclusion: A rare variant of necdin (p.V318A) was described in a family with Kallmann syndrome associated with a FGFR1 mutation. Familial segregation and in vitro analysis suggested that this non-synonymous variant did not have a direct causative role in the hypogonadism phenotype. NDN mutations are not a frequent cause of congenital IHH.
Resumo:
Lima GA, Anhe GF, Giannocco G, Nunes MT, Correa-Giannella ML, Machado UF. Contractile activity per se induces transcriptional activation of SLC2A4 gene in soleus muscle: involvement of MEF2D, HIF-1a, and TR alpha transcriptional factors. Am J Physiol Endocrinol Metab 296: E132-E138, 2009. First published October 28, 2008; doi: 10.1152/ajpendo.90548.2008.-Skeletal muscle is a target tissue for approaches that can improve insulin sensitivity in insulin-resistant states. In muscles, glucose uptake is performed by the GLUT-4 protein, which is encoded by the SLC2A4 gene. SLC2A4 gene expression increases in response to conditions that improve insulin sensitivity, including chronic exercise. However, since chronic exercise improves insulin sensitivity, the increased SLC2A4 gene expression could not be clearly attributed to the muscle contractile activity per se and/or to the improved insulin sensitivity. The present study was designed to investigate the role of contractile activity per se in the regulation of SLC2A4 gene expression as well as in the participation of the transcriptional factors myocyte enhancer factor 2D (MEF2D), hypoxia inducible factor 1a (HIF-1a), and thyroid hormone receptor-alpha (TR alpha). The performed in vitro protocol excluded the interference of metabolic, hormonal, and neural effects. The results showed that, in response to 10 min of electrically induced contraction of soleus muscle, an early 40% increase in GLUT-4 mRNA (30 min) occurred, with a subsequent 65% increase (120 min) in GLUT-4 protein content. EMSA and supershift assays revealed that the stimulus rapidly increased the binding activity of MEF2D, HIF-1a, and TR alpha into the SLC2A4 gene promoter. Furthermore, chromatin immunoprecipitation assay confirmed, in native nucleosome, that contraction induced an approximate fourfold (P < 0.01) increase in MEF2D and HIF-1a-binding activity. In conclusion, muscle contraction per se enhances SLC2A4 gene expression and that involves MEF2D, HIF-1a, and TR alpha transcription factor activation. This finding reinforces the importance of physical activity to improve glycemic homeostasis independently of other additional insulin sensitizer approaches.
Resumo:
Abnormal heart-rate (HR) response during or after a graded exercise test has been recognized as a strong and an independent predictor of all-cause mortality in healthy and diseased subjects. The purpose of the present study was to evaluate the HR response during exercise in women with systemic lupus erythematosus (SLE). In this case-control study, 22 women with SLE (age 29.5 perpendicular to 1.1 years) were compared with 20 gender-, BMI-, and age-matched healthy subjects (age 26.5 +/- 1.4 years). A treadmill cardiorespiratory test was performed and HR response during exercise was evaluated by the chronotropic reserve (CR). HR recovery (Delta HRR) was defined as the difference between HR at peak exercise and at both first (Delta HRR1) and second (Delta HRR2) minutes after exercising. SLE patients presented lower peak VO(2) when compared with healthy subjects (27.6 perpendicular to 0.9 vs. 36.7 perpendicular to 1.1 ml/kg/min, p = 0.001, respectively). Additionally, SLE patients demonstrated lower CR (71.8 +/- 2.4 vs. 98.2 +/- 2.6%, p = 0.001), Delta HRR1 (22.1 +/- 2.5 vs. 32.4 +/- 2.2%, p = 0.004) and Delta HRR2 (39.1 +/- 2.9 vs. 50.8 +/- 2.5%, p = 0.001) than their healthy peers. In conclusion, SLE patients presented abnormal HR response to exercise, characterized by chronotropic incompetence and delayed Delta HRR. Lupus (2011) 20, 717-720.
Resumo:
Background: Progression and long-term renal outcome of lupus nephritis (LN) in male patients is a controversial subject in the literature. The aim of this study was to evaluate the influence of male gender on the renal outcome of LN. Methods: All male (M) LN patients who fulfilled American College of Rheumatology lupus criteria and who were referred for a kidney biopsy from 1999 to 2009 were enrolled in the study. Subjects with end-stage renal disease at baseline, or follow-up time below 6 months, were excluded. Cases were randomly matched to female (F) patients according to the class of LN, baseline estimated glomerular filtration rate (eGFR, Modification of Diet in Renal Disease simplified formula) and follow-up time. Treatment was decided by the clinical staff based on usual literature protocols. The primary endpoint was doubling of serum creatinine and/or end-stage renal disease. The secondary endpoint was defined as a variation of glomerular filtration rate (GFR) per year (Delta GFR/y index), calculated as the difference between final and initial eGFR adjusted by follow-up time for each patient. Results: We included 93 patients (31 M : 62 F). At baseline, M and F patients were not statistically different regarding WHO LN class (II 9.7%, IV 71%, V 19.3%), eGFR (M 62.4 +/- 36.4 ml/min/1.73 m(2) versus F 59.9 +/- 32.7 ml/min/1.73 m(2)), follow-up time (M 44.2 +/- 27.3 months versus F 39.9 +/- 27.9 months), and 24-hour proteinuria (M 5.3 +/- 4.6 g/day versus F 5.2 +/- 3.0 g/day), as well as age, albumin, C3, antinuclear antibody, anti-DNA antibody and haematuria. There was no difference in the primary outcome (M 19% versus F 13%, log-rank p = 0.62). However, male gender was significantly associated with a worse renal function progression, as measured by Delta GFR/y index (beta coefficient for male gender -12.4, 95% confidence interval -22.8 to -2.1, p = 0.02). The multivariate linear regression model showed that male gender remained statistically associated with a worse renal outcome even after adjustment for eGFR, proteinuria, albumin and C3 complement at baseline. Conclusion: In our study, male gender presented a worse evolution of LN (measured by an under GFR recovering) when compared with female patients with similar baseline features and treatment. Factors that influence the progression of LN in men and sex-specific treatment protocols should be further addressed in new studies. Lupus (2011) 20, 561-567.
Resumo:
The spatial and temporal association of muscle-specific tropomyosin gene expression, and myofibril assembly and degradation during metamorphosis is analyzed in the gastropod mollusc. Haliotis rufescens. Metamorphosis of tile planktonic larva to the benthic juvenile includes rearrangement and atrophy of specific larval muscles, and biogenesis of the new juvenile muscle system. The major muscle of the larva - the larval retractor muscle - reorganizes at metamorphosis, with two suites of cells having different fates. The ventral cells degenerate, while the dorsal cells become part of the developing juvenile mantle musculature. Prior to these changes in myofibrillar structure, tropomyosin mRNA prevalence declines until undetectable in the ventral cells, while increasing markedly in the dorsal cells. In the foot muscle and right shell muscle, tropomyosin mRNA levels remain relatively stable, even trough myofibril content increases. In a population of median mesoderm cells destined to form de novo the major muscle of the juvenile and adult (the columellar muscle), tropomyosin expression is initiated at 45 h after induction of metamorphosis. Myofibrillar filamentous actin is not detected in these cells until about 7 days later. Given that patterns of tropomyosin mRNA accumulation in relation to myofibril assembly and disassembly differ significantly among the four major muscle systems examined, we suggest that different regulatory mechanisms, probably operating at both transcriptional and post-transcriptional levels, control the biogenesis and atrophy of different larval and postlarval muscles at metamorphosis.
Resumo:
We have shown previously that nitric oxide (NO) controls platelet endothelial cell adhesion molecule (PECAM-1) expression on both neutrophils and endothelial cells under physiological conditions. Here, the molecular mechanism by which NO regulates lipopolysaccharide (LPS)-induced endothelial PECAM-1 expression and the role of interleukin (IL)-10 on this control was investigated. For this purpose, N-(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg/day for 14 days dissolved in drinking water) was used to inhibit both constitutive (cNOS) and inducible nitric oxide (iNOS) synthase activities in LPS-stimulated Wistar rats (5 mg/kg, intraperitoneally). This treatment resulted in reduced levels of serum NO. Under this condition, circulating levels of IL-10 was enhanced, secreted mainly by circulating lymphocytes, dependent on transcriptional activation, and endothelial PECAM-1 expression was reduced independently on reduced gene synthesis. The connection between NO, IL-10 and PECAM-1 expression was examined by incubating LPS-stimulated (1 mu g/ml) cultured endothelial cells obtained from naive rats with supernatant of LPS-stimulated lymphocytes, which were obtained from blood of control or L-NAME-treated rats. Supernatant of LPS-stimulated lymphocytes obtained from L-NAME-treated rats, which contained higher levels of IL-10, reduced LPS-induced PECAM-1 expression by endothelial cells, and this reduction was reversed by adding the anti-IL-10 monoclonal antibody. Therefore, an association between NO, IL-10 and PECAM-1 was found and may represent a novel mechanism by which NO controls endothelial cell functions.
Resumo:
Elevated concentrations of plasma tumour necrosis factor (TNF)-alpha, interleukin (IL)-1 and IL-6 have been detected in patients with alcoholic hepatitis and have been implicated in the pathogenesis of hepatocyte necrosis. The present study used a rat model to conduct a detailed histological and biochemical examination of the expression of various pro-inflammatory cytokines and associated liver pathology in ethanol-potentiated lipopolysaccharide (LPS)-induced liver injury. Male Wistar rats were pair-fed either the control or ethanol-containing (36% of caloric intake as ethanol) form of the Lieber-DeCarli liquid diet for 6 weeks. Liver injury was induced by the i.v. injection of LPS (1 mu g/g bodyweight), with animals being killed at O, 1, 3, 6, 12 and 24 h after injection. At the later time points, plasma transaminase and transpeptidase activities were significantly elevated in ethanol-fed LPS-treated rats compared with control-fed LPS-treated animals. At these times after LPS treatment, hepatocytes in ethanol-fed animals displayed fatty change and necrosis with an associated neutrophil polymorph infiltrate. Time course analysis revealed that plasma TNF-alpha (1-3 h post-LPS) and IL-6 (3 h post-LPS) bioactivity was significantly elevated in ethanol-fed compared with control-fed animals. No difference was seen in plasma IL-1 alpha concentration (maximal in both groups 6 h post-LPS). The expression of TNF-alpha, IL-1 alpha, IL-1 beta and IL-6 mRNA were elevated between 1 and 6 h post-LPS in the livers of both control and ethanol-fed rats. However, ethanol-fed LPS-treated animals exhibited significantly higher maximal expression of IL-1 and IL-6 mRNA. Comparison of the appearance of cytokine mRNA and plasma bioactivity indicated an effect of ethanol feeding on post-transcriptional processing and/or the kinetics of the circulating cytokines. Elevated levels of both hepatic cytokine mRNA expression and the preceding plasma cytokines are presumably a necessary prerequisite for hepatic injury seen in this model and, therefore, possibly for the damage seen in human alcoholics. Further studies using this model may lead to significant advances in our understanding of the pathogenic mechanisms of alcoholic liver disease in humans.