875 resultados para Spectral Difference Method
Resumo:
Over expression of cyclin A in human tumors has been linked to cancer by various experimental lines of evidence. However, physical and spectral characterization of the human cyclin A gene and its interactions with anticancer drugs have not been reported. Our gene sequence analysis, singular value decomposition method and melting studies in the presence of antitumor agents, daunomycin, doxorubicin and Hoechst 33258 showed that cyclin A gene had both AT-rich and GC-rich domains. For a ligand with unknown DNA binding specificity, this gene sequence can be used to differentiate its DNA binding preference.
Resumo:
Bulk and nanoscale powders of YAG:Re (Re = Ce, Pr, Tb) were synthesized by solid-state and sol-gel method. The changes of spectra and energy level were studied. Compared with the bulk YAG:Re (Re = Ce, Pr, Tb) crystals, the lattice parameter of YAG:Re (Re = Ce, Pr, Tb) nanocrystals decreases. It is also found that the excitation peaks of 5d energy levels shift in nanocrystals. The physical reason for spectral and energy level changes is a comprehensive result from the shift of energy centroid of the 5d orbit, the Coulomb interaction between 4f and 5d electrons and the crystal field splitting of the 5d energy level.
Resumo:
CH4 and CO oxidation reaction on perovskite-like oxides La2-xSrxMO4 (0.01 <= x <= 1.0; M = Cu, Ni) was investigated from cyclic voltammetry method, finding that for suprafacial CO oxidation reaction, the catalyst activity has a close correlation to the area of redox peaks measured in the cyclic voltammetry, the larger the peak area is, the higher the activity will be, while for interfacial CH4 oxidation reaction, the activity depends mainly on the difference in redox potentials (Delta E), and the smaller the difference in redox potentials is, the higher the activity will be.
Resumo:
In this article, we report on an approach of using an emulsion polymerized polymer in preparing organic-inorganic nanocomposites through a sol-gel technique. By mixing a polymer emulsion with prehydrolyzed tetraethoxysilane transparent poly(butyl methacrylate)/SiO2, nanocomposites were prepared as shown by TEM. AFM, FTIR, and XPS results show that there is a strong interaction between polymer latex particles and the SiO2 network. Comparison of the emulsion method with a traditional solution method shows that nanocomposites can be prepared by both methods, but there is some difference in their morphology and properties.
Resumo:
The polycrystals of KZnF3 : Eu have been synthesized by hydrothermal method at 220 degreesC, The product was characterized by XRD, XPS and SEM. The emission and excitation spectra of europium ion were measured. The existence of Eu2+ ion was confirmed by ESR and spectroscopy. The sites were possibly occupied by Eu2+ ions, charge compensation in this crystal were also discussed.
Resumo:
The inductively coupled plasma atomic emission, spectrometry (ICP-AES) and its signal characteristics were discussed using modem spectral estimation technique. The power spectra density (PSD) was calculated using the auto-regression (AR) model of modem spectra estimation. The Levinson-Durbin recursion method was used to estimate the model parameters which were used for the PSD computation. The results obtained with actual ICP-AES spectra and measurements showed that the spectral estimation technique was helpful for the better understanding about spectral composition and signal characteristics.
Resumo:
Target transformation factor analysis was used to correct spectral interference in inductively coupled plasma atomic emission spectrometry (ICP-BES) for the determination of rare earth impurities in high purity thulium oxide. Data matrix was constructed with pure and mixture vectors and background vector. A method based on an error evaluation function was proposed to optimize the peak position, so the influence of the peak position shift in spectral scans on the determination was eliminated or reduced. Satisfactory results were obtained using factor analysis and the proposed peak position optimization method.
Resumo:
Mass spectra of LaxC2n (x = 1,2), well known endohedral metallofullerenes, and Lu2C2n (2n = 76-112), new members of extractable metallofullerenes, were studied. Positive-ion laser desorption/ionization (LDI) and electron impact (EI) mass spectra indicated that lutetium is a special lanthanide that prefers to form dilutetium fullerenes by the are-burning method. However, the signals for Lu2C2n become very weak in negative-ion LDI-MS, this is different from La-2@C-80, which has close relative abundances in positive- and negative-ion MS. The distinction between Lu2C2n and La-2@C-80 in the negative-ion LDI mass spectra may be due to the different structures of La- and Lu-containing fullerenes. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
The collapse behaviour of phthalocyanine monolayers at the air-water interface was studied by means of compression-expansion isotherms. Measurements of two cycles of compression-expansion isotherms of copper tetrakis (4'-benzyloxy-4-phenylsulfonylphenoxy) phthalocyanine showed that the difference in the area per molecule at target pressure between the first cycle and the second cycle was dependent on the target pressure. This difference was used to identify the collapse of monolayers at the air-water interface. The transfer behaviour of monolayers at the air-water interface onto a substrate at different target pressures was also studied.
Resumo:
The luminescence properties of BaB8O13:xEu,yTb phosphors which were synthesized in air atmosphere have been studied. The emissions of europium(III), terbium(III) and europium(II) have been observed in BaB8O13:xEu, yTb phosphors. Electron paramagnetic resonance (EPR) studies were carried out. The intensities of EPR peaks of europium(II) are increased if terbium(III) is increased in BaB8O13:Eu3+,yTb(3+) phosphors. So the valence state of europium is influenced by terbium(III). These phenomena can be explained by an electron transfer mechanism. We found a new kind of method to prepare trichromatic phosphor that two rare earth ions activated in a BaB8O13 matrix.
Resumo:
A simple technique for preparation of powder binary fluorides activated with divalent samarium ions is described. The samarium impurity is introduced as samarium trifluoride SmF3 and hydrogen acts as the reducing agent to transform Sm3+ into Sm2+. Using this method, samarium has been stabilized in the divalent state in some fluorides: KMgF3, LiBaF3, BaBeF4, SrMgF4 and BaMgF4. Moreover, BaBeF4, SrMgF4 and BaMgF4 have never been activated with Sm2+ ions up to now. We also find that under the same synthetic conditions samarium can not be stabilized in the divalent state in some fluorides: KCaF3, CaBeF4 and CaMgF4, but the characteristic luminescence of trivalent samarium Sm3+ appears in these matrices. The emission and excitation spectra of samarium (Sm2+ and Sm3+) in these binary fluorides are presented and briefly discussed. The relationship between the oxidation state of samarium and the composition, the structure of matrices is also analyzed.
Resumo:
Correction of spectral overlap interference in inductively coupled plasma atomic emission spectrometry by factor analysis is attempted. For the spectral overlap of two known lines, a data matrix can be composed from one or two pure spectra and a spectrum of the mixture. The data matrix is decomposed into a spectra matrix and a concentration matrix by target transformation factor analysis. The component concentration of interest in a binary mixture is obtained from the concentration matrix and interference from the other component is eliminated. This method is applied to correcting spectral interference of yttrium on the determination of copper and aluminium: satisfactory results are obtained. This method may also be applied to correcting spectral overlap interference for more than two lines. Like other methods of correcting spectral interferences, factor analysis can only be used for additive spectral overlap. Results obtained from measurements on copper/yttrium mixtures with different white noise added show that random errors in measurement data do not significantly affect the results of the correction method.
Resumo:
The absorptivities of color elements in a mixture can be obtained by using Gauas' elimination with selection of principal element in matrix to the standards. These values can be applied to flexible tolerance simplex method to give the composition of samples. In the exprimental design and data treatment, an effort was made to minimize the errors of results according the principal of optimization. When the difference of absorptivities of color material is significant to the exprimental error, the pr...
Resumo:
Starting from nonhydrostatic Boussinesq approximation equations, a general method is introduced to deduce the dispersion relationships. A comparative investigation is performed on inertia-gravity wave with horizontal lengths of 100, 10 and 1 km. These are examined using the second-order central difference scheme and the fourth-order compact difference scheme on vertical grids that are currently available from the perspectives of frequency, horizontal and vertical component of group velocity. These findings are compared to analytical solutions. The obtained results suggest that whether for the second-order central difference scheme or for the fourth-order compact difference scheme, Charny-Phillips and Lorenz ( L) grids are suitable for studying waves at the above-mentioned horizontal scales; the Lorenz time-staggered and Charny-Phillips time staggered (CPTS) grids are applicable only to the horizontal scales of less than 10 km, and N grid ( unstaggered grid) is unsuitable for simulating waves at any horizontal scale. Furthermore, by using fourth-order compact difference scheme with higher difference precision, the errors of frequency and group velocity in horizontal and vertical directions produced on all vertical grids in describing the waves with horizontal lengths of 1, 10 and 100 km cannot inevitably be decreased. So in developing a numerical model, the higher-order finite difference scheme, like fourth-order compact difference scheme, should be avoided as much as possible, typically on L and CPTS grids, since it will not only take many efforts to design program but also make the calculated group velocity in horizontal and vertical directions even worse in accuracy.
Resumo:
The VEGETATION (VGT) sensor in SPOT 4 has four spectral bands that are equivalent to Landsat Thematic Mapper (TM) bands (blue, red, near-infrared and mid-infrared spectral bands) and provides daily images of the global land surface at a 1-km spatial resolution. We propose a new index for identifying and mapping of snow ice cover, namely the Normalized Difference Snow/Ice Index (NDSII), which uses reflectance values of red and mid-infrared spectral bands of Landsat TM and VGT. For Landsat TM data, NDSII is calculated as NDSIITM =(TM3 -TM5)/(TM3 +TM5); for VGT data, NDSII is calculated as NDSIIVGT =(B2- MIR)/(B2 + MIR). As a case study we used a Landsat TM image that covers the eastern part of the Qilian mountain range in the Qinghai-Xizang (Tibetan) plateau of China. NDSIITM gave similar estimates of the area and spatial distribution of snow/ice cover to the Normalized Difference Snow Index (NDSI=(TM2-TM5)/(TM2+TM5)) which has been proposed by Hall et al. The results indicated that the VGT sensor might have the potential for operational monitoring and mapping of snow/ice cover from regional to global scales, when using NDSIIVGT.