994 resultados para Soil Fertility


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reuse of treated wastewater could be a promising measure to attenuate the water scarcity burden. In agriculture, irrigation with wastewater may contribute to improve production yields, reduce the ecological footprint and promote socioeconomic benefits. However, it cannot be considered exempt of adverse consequences in environmental and human health. Apart from the introduction of some biological and chemical hazardous agents, the disturbance of the indigenous soil microbial communities and, thus, of vital soil functions impacting soil fertility may occur. The consequences of these disturbances are still poorly understood. This chapter summarises the physicochemical and microbiological alterations in soil resultant from irrigation with treated wastewater that are described in scientific literature. These alterations, which involve a high complexity of variables (soil, wastewater, climate, vegetal cover), may have impacts on soil quality and productivity. In addition, possible health risks may arise, in particular through the direct or indirect contamination of the food chain with micropollutants, pathogens or antibiotic resistance determinants. The current state of the art suggests that irrigation with treated wastewater may have a multitude of long-term implications on soil productivity and public health. Although further research is needed, it seems evident that the analysis of risks associated with irrigation with treated wastewater must take into account not only the quality of water, but other aspects as diverse as soil microbiota, soil type or the cultivated plant species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the fifteen century, the rainfed-cultivation of wheat for grain is traditionally performed on the Island of Madeira. Under several microclimatic conditions and along very sloppy mountains, the landraces are grown on isolated terraces of Andosols with high amounts of iron. Iron oxides are the main inorganic binding agent contributing to the stability of aggregates and to soil fertility in long-term sustainable agriculture in acid and iron-rich soils. After a two day period of seedling initial growth, a screening test of sixty traditional wheat (Triticum spp.) landraces from the ISOPlexis Genebank at the University of Madeira, Funchal, was performed using nutrient solutions containing 10 or 600 mM Fe, during five days, under controlled laboratory conditions. The elongation of the longest primary root was measured for each genotype and the mean root increment relative to control (as, % relative root increment or RRI; n=28) calculated. This parameter appeared to be a sensitive indicator of Fe tolerance in wheat. Over 85% of wheat germplasm showed the RRI higher than 50%, while the RRI of seven accessions exceeded 70%. This indicates that those landraces are Fe tolerant and might be of particular interest for cultivation under acid rich iron soils of tropical and subtropical areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resumo: O entendimento do fluxo de produção e do aporte de nutrientes via decomposição da serrapilheira e as interações do processo com parâmetros edáficos e ciclagem de nutrientes de espécies nativas da Caatinga têm sido pouco estudados. O conhecimento sobre ciclagem de nutrientes em florestas manejadas também permite inferências sobre as espécies com maior capacidade de reciclagem de nutrientes e seu potencial para recuperação de áreas degradadas. Objetivou-se com isso avaliar a produção e a degradação da serrapilheira de oito espécies lenhosas da Caatinga e mensurar os efeitos de sua aplicação sobre a fertilidade do solo e sobre a produção de sorgo em solo degradado. Para isso realizou-se três ensaios: para o ensaio I quantificou-se a produção de serrapilheira em um delineamento inteiramente casualizado com 6 repetições, por meio da instalação de coletores sob a projeção da copa das espécies (tratamentos): mofumbo, sabiá, jurema-preta, jucá, catingueira, pereiro, pau-branco e marmeleiro, sendo o material coletado mensalmente; foram quantificadas a produção das frações folhas, caule, material reprodutivo, miscelânea e total, bem como o aporte de nutrientes no período chuvoso e seco. Para o ensaio II avaliou-se a taxa de degradação da fração folhas de cada espécie citada por meio da utilização de litter bags, em delineamento inteiramente casualizado com 4 repetições, as coletas foram aos 0, 30, 60, 90, 120 e 150 dias, em seguida quantificou-se os macro e micronutrientes, celulose, lignina e carbono em cada tempo de amostragem. Para o ensaio III, realizou-se experimento em casa de vegetação para mensurar os efeitos da aplicação dos resíduos da serrapilheira das mesmas espécies mencionadas nos ensaios anteriores (I e II) sobre a fertilidade do solo e a produção de sorgo em solo degradado, neste experimento adotou-se o delineamento em blocos casualizados com 5 tratamentos e 5 repetições, sendo avaliadas doses equivalentes a: 0, 15, 30, 60 e 120 kg ha-1 de N dos resíduos de cada espécie e um tratamento adicional com adubação mineral, totalizando 30 unidades experimentais para cada espécie. As variáveis mensuradas foram biométricas, biomassa, teor relativo de clorofila e nitrogênio total, além de análises de fertilidade do solo. Com a análise dos dados verificou-se que a época de maior produção de serrapilheira ocorreu no final do período chuvoso para o início do período seco. A espécie jucá apresentou maior produção de serrapilheira, comparado às outras espécies. O nutriente cálcio apresentou maior acúmulo na serrapilheira para as espécies mofumbo, sabiá, catingueira, pereiro e marmeleiro e o nitrogênio foi superior para as espécies jurema-preta, jucá e pau-branco. Para todas as espécies avaliadas no ensaio de degradação houve redução significativa na sua biomassa em relação ao tempo zero, apresentando a seguinte ordem de velocidade de decomposição: jurema-preta > catingueira > pau-branco > jucá > marmeleiro > mofumbo > pereiro > sabiá. No ensaio de fertilização com os resíduos verificou-se que o marmeleiro promoveu efeitos negativos no solo, como acidificação. Porém, a aplicação dos resíduos da espécie pau-branco foi a que promoveu aumento nos valores de K, SB e CEC do solo e na produção do sorgo os resíduos de jurema-preta e pau-branco foram as que promoveram aumento na massa seca das plantas. Enquanto a adubação mineral proporcionou aumento na produção de massa seca do sorgo, demonstrando que a associação entre adubo mineral e o uso da serrapilheira de espécies da Caatinga pode ser uma opção viável para acelerar a recuperação de solos degradados. Abstract: The understanding of the production flow and nutrient supply via decomposition of litter and process interactions with edaphic parameters and nutrient cycling of native species of the Caatinga has been little studied. The knowledge of nutrient cycling in managed forests also allow inferences about species with capacity greater nutrient recycling capacity and its potential for recovery of degraded areas. This study aimed to evaluate the production and litter degradation 8 woody species of Caatinga and measure the effects of its application on soil fertility and production of sorghum in degraded soil. To this was carried out three tests: for the test I quantified the production of litter in a completely randomized design with 6 replications, by installing collectors under the canopy projection in the species (treatments): mofumbo, sabiá, jurema-preta, jucá, catingueira, pereiro, pau-branco and marmeleiro for each species, and the material collected monthly, were quantified the production of fractions leaves, stem, reproductive material, miscellany and total nutrient intake in the rainy and dry season. For II test evaluated the degradation rate of the fraction leaves through the use of litter bags, in a completely randomized design with 4 replications, the collected was 0, 30, 60, 90, 120 and 150 days and quantitated nutrients, cellulose, lignin and carbon at each evaluation time. For the III test, there was the experiment in a greenhouse to measure the effects of the application of litter waste of the same species of previous tests (I and II) on soil fertility and production of sorghum in degraded soil, was adopted the randomized block design with 5 treatments and 5 replications and evaluated doses equivalent to: 0, 15, 30, 60 and 120 kg ha-1 N of waste each species and an additional treatment with mineral fertilizer, totaling 30 experimental units for each species. Biometric analysis and biomass, relative chlorophyll content and total nitrogen were proceeded. In addition to soil fertility analysis. With the data analysis it was found that the time of greatest litterfall occurred at the end of the rainy season to the beginning of the dry season. The jucá species showed higher production compared to other species. The nutrient calcium had higher accumulation for the species mofumbo, sabiá, catingueira, pereiro and marmeleiro and nitrogen was higher for species jurema-preta, jucá and pau-branco. All species evaluated in degradation test had a significant reduction in biomass over time zero. They presented the following order of decomposition rate: jurema-preta > catingueira > pau-branco > jucá > marmeleiro > mofumbo > pereiro > sabiá. For fertility test it was found that marmeleiro promoted negative effects on soil, such as acidification. However, pau-branco was the specie that promoted further improvements in the K values, SB and CEC to the soil and for the production of sorghum, the waste jurema-preta and pau-branco promoted increase in dry matter plants. While the mineral fertilization provided an increase in dry matter production of sorghum, demonstrating that the combination of mineral fertilizer and the use of litter of Caatinga species may be a viable option to speed up the recovery of degraded soils.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Composting is a useful way of transforming livestock waste into organic fertilizer, which is proven to increase soil nutrient levels, and thus crop yield. Remains from production and slaughter of small ruminants can become a source of important elements for plant growth, such as N, after microorganism-driven decomposition.The aim of this investigation was to evaluate the effects of this compost on soil fertility and on the nutritional status and yield of the corn crop. The experiment was conducted in a Haplic Luvisol in a randomized block design with six treatments and five application rates of the organic compound in Mg ha-1: 3 (half the standard rate), 6 (standard rate), 9 (one and a half times the standard rate), 12 (twice the standard rate), and 24 (four times the standard rate) and an additional treatment with mineral fertilizers (110, 50 e 30 kg ha-1 of N, P2O5 and K2O, respectively), with four blocks. Evaluations were performed for two harvests of rainfed crops, measuring soil fertility, nutritional status, and grain yield. The compost increased P, K, Na and Zn values in the 0.00-0.20 m layer in relation of mineral fertilization in 616, 21, 114 and 90 % with rate 24 Mg ha-1 in second crop. Leaf N, Mg, and S contents, relative chlorophyll content, and the productivity of corn kernels increased in 27, 32, 36, 20 e 85 %, respectively, of low rate (3 Mg ha-1) to high rate (24 Mg ha-1) with of application of the compost. Corn yield was higher with application of organic compost in rate of 24 Mg ha-1 than mineral fertilizer combination in second crop.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Embora a prática do uso do carvão vegetal no solo visando a melhoria do desenvolvimento das plantas seja milenar, pouco se sabe sobre os efeitos técnicos de sua aplicação, sobretudo em longo prazo. Assim, tendo as terras pretas de índio (TPIs) como modelo de sustentabilidade do solo em função da presença de carbono pirogênico (C-pyr), na última década os estudos acerca do uso de materiais ricos nessa forma de carbono (biocarvão) se intensificaram. Diversos estudos têm abordado os efeitos da aplicação de biocarvão no solo e seus efeitos sobre os atributos físicos, químicos e biológicos do solo, sobre a matéria orgânica, ciclos biogeoquímicos do carbono, desempenho agronômico de culturas anuais, espécies florestais, olerículas, emissão de gases de efeito estufa (N2O, CO2 e CH4) e mais recentemente os efeitos sobre a dinâmica de pesticidas no solo. Nesse sentido, esse trabalho aborda algumas características do uso do biocarvão no solo, com enfoque na sua produção, matéria prima, características físicas e químicas, aspectos agronômicos e ambientais do uso em solos e como substratos agrícolas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent decades, the use of organic fertilizers has gained increasing interest mainly for two reasons: their ability to improve soil fertility and the need to find a sustainable alternative to mineral and synthetic fertilizers. In this context, sewage sludge is a useful organic matrix that can be successfully used in agriculture, due to its chemical composition rich in organic matter, nitrogen, phosphorus and other micronutrients necessary for plant growth. This work investigated three indispensable aspects (i.e., physico-chemical properties, agronomic efficiency and environmental safety) of sewage sludge application as organic fertilizer, emphasizing the role of tannery sludge. In a comparison study with municipal sewage sludge, results showed that the targeted analyses applied (total carbon and nitrogen content, isotope ratio of carbon and nitrogen, infrared spectroscopy and thermal analysis) were able to discriminate tannery sludge from municipal ones, highlighting differences in composition due to the origin of the wastewater and the treatment processes used in the plants. Regarding agronomic efficiency, N bioavailability was tested in a selection of organic fertilizers, including tannery sludge and tannery sludge-based fertilizers. Specifically, the hot-water extractable N has proven to be a good chemical indicator, providing a rapid and reliable indication of N bioavailability in soil. Finally, the behavior of oxybenzone (an emerging organic contaminant detected in sewage sludge) in soils with different physico-chemical properties was studied. Through adsorption and desorption experiments, it was found that the mobility of oxybenzone is reduced in soils rich in organic matter. Furthermore, through spectroscopic methods (e.g., infrared spectroscopy and surface-enhanced Raman spectroscopy) the mechanisms of oxybenzone-humic acids interaction were studied, finding that H-bonds and π-π stacking were predominantly present.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The graphical representation of spatial soil properties in a digital environment is complex because it requires a conversion of data collected in a discrete form onto a continuous surface. The objective of this study was to apply three-dimension techniques of interpolation and visualization on soil texture and fertility properties and establish relationships with pedogenetic factors and processes in a slope area. The GRASS Geographic Information System was used to generate three-dimensional models and ParaView software to visualize soil volumes. Samples of the A, AB, BA, and B horizons were collected in a regular 122-point grid in an area of 13 ha, in Pinhais, PR, in southern Brazil. Geoprocessing and graphic computing techniques were effective in identifying and delimiting soil volumes of distinct ranges of fertility properties confined within the soil matrix. Both three-dimensional interpolation and the visualization tool facilitated interpretation in a continuous space (volumes) of the cause-effect relationships between soil texture and fertility properties and pedological factors and processes, such as higher clay contents following the drainage lines of the area. The flattest part with more weathered soils (Oxisols) had the highest pH values and lower Al3+ concentrations. These techniques of data interpolation and visualization have great potential for use in diverse areas of soil science, such as identification of soil volumes occurring side-by-side but that exhibit different physical, chemical, and mineralogical conditions for plant root growth, and monitoring of plumes of organic and inorganic pollutants in soils and sediments, among other applications. The methodological details for interpolation and a three-dimensional view of soil data are presented here.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to report single season effects of wood biochar (char) application coupled with N fertilization on soil chemical properties, aerobic rice growth and grain yield in a clayey Rhodic Ferralsol in the Brazilian Savannah. Char application effected an increase in soil pH, K, Ca, Mg, CEC, Mn and nitrate while decreasing Al content and potential acidity of soils. No distinct effect of char application on grain yield of aerobic rice was observed. We believe that soil properties impacted by char application were inconsequential for rice yields because neither water, low pH, nor the availability of K or P were limiting factors for rice production. Rate of char above 16 Mg ha^(−1) reduced leaf area index and total shoot dry matter by 72 days after sowing. The number of panicles infected by rice blast decreased with increasing char rate. Increased dry matter beyond the remobilization capacity of the crop, and high number of panicles infected by rice blast were the likely cause of the lower grain yield observed when more than 60 kg N ha^(−1) was applied. The optimal rate of N was 46 kg ha^(−1) and resulted in a rice grain yield above 3 Mg ha^(−1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two controlled microcosm experiments aimed at a critical re-assessment of the contributions of divergent arbuscular mycorrhizal (AM) fungi to plant mineral nutrition were established that specifically targeted Plantago lanceolata–Glomus intraradices (B.B/E) and –Gigaspora margarita (BEG 34) symbioses developed in a native, nutrient limited, coastal dune soil. Plant tissue nitrogen (N), phosphorus (P) and potassium (K) status as well as plant growth parameters and levels of mycorrhizal colonization were assessed at harvest. In addition to the general well-established mycorrhizal facilitation of P uptake, the study was able to demonstrate a G. intraradices-specific contribution to improved plant nitrogen and potassium nutrition. In the two respective experiments, G. intraradices-inoculated plants had 27.8% and 40.8% more total N and 55.8% and 23.3% more total K when compared to Gi. margarita inoculated counterparts. Dissimilar overall contribution of the two isolates to plant nutrition was identified in AM-genus specific differences in plant tissue N:P:K ratios. G. intraradices inoculated and non-mycorrhizal plants generally exhibited N:P:K ratios indicative of P limitation whereas for Gi.margarita mycorrhizal plants, corresponding ratios strongly implied either N or K limitation. The study provides further evidence highlighting AM functional biodiversity in respect to plant nutrient limitation experienced by mycorrhizal P. lanceolata in an ecologically relevant soil system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Producers utilizing a two year rotation of corn and soybean often apply fertilizer on a biannual basis, spreading recommended amounts of phosphorus and potassium for both crops prior to corn establishment. This approach minimizes application costs and is in accordance with university fertility recommendations that have found a low probability of fertilizer yield response when soils tested at the medium/optimum level or above. However, the field trials on which these state recommendations were developed are often several decades old. Increases in average corn and soybean yields and associated increases in crop nutrient removal rates have called into question the validity of these recommendations for current production environments. This study investigated the response of soil test levels and grain yield to annual and biannual fertilizer applications made at 1x and 2x rates of current university fertilizer recommendations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Title within ornamental border.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferruginous "campos rupestres" are a particular type of vegetation growing on iron-rich primary soils. We investigated the influence of soil properties on plant species abundance at two sites of ferruginous "campos rupestres" and one site of quartzitic "campo rupestre", all of them in "Quadrilátero Ferrífero", in Minas Gerais State, southeastern Brazil. In each site, 30 quadrats were sampled to assess plant species composition and abundance, and soil samples were taken to perform chemical and physical analyses. The analyzed soils are strongly acidic and presented low fertility and high levels of metallic cations; a principal component analysis of soil data showed a clear segregation among sites due mainly to fertility and heavy metals content, especially Cu, Zn, and Pb. The canonical correspondence analysis indicated a strong correlation between plant species abundance and soil properties, also segregating the sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A considerable portion of Brazil's commercial eucalypt plantations is located in areas Subjected to periods of water deficit and grown in soils with low natural fertility, particularly poor In potassium. Potassium is influential in controlling water relations of plants. The objective of this study was to verify the influence of potassium fertilization and soil water potential (psi(w)) oil the dry matter production and oil water relations Of eucalypt seedlings grown under greenhouse conditions. the experimental units were arranged in 4x4x2 randomized blocks factorial design, as follow: four species of Eucalyptus (Eucalyptus grandis, Eucalyptus urophylla, Eucalyptus camaldulensis and hybrid Eucalyptus grandis x Eucalyptus urophylla), four dosages of K (0, 50, 100 and 200 mg dm(-3)) and two soil water potentials (-0.01 M Pa and -0.1 M Pa). Plastic containers with 15 cm diameter and 18 cm height, with Styrofoam base, containing 3.0 dm(3) of soil and two plants per container were used. Soil water potential was kept at -0.01 MPa for 40 days after seeding. Afterward, the experimental units were divided into two groups: in one group the potential was kept at 0.01 MPa, and in the other one, at -0.10 MPa. Sol I water potential was control led gravimetrically twice a day with water replacement until the desired potential was reestablished. A week before harvesting, the leaf water potential (psi), the photosynthetic rate (A), the stomatal conductance (gs) and the transpiration rate were evaluated. The last week before harvesting, the mass of the containers was recorded daily before watering to determine the consumption of water by the plants. After harvesting, total dry matter and leaf area were evaluated. the data were Submitted to analysis of variance, to Tukey's tests and regression analyses. The application of K influenced A, gs and the transpiration rate. Plants deficient in K showed lower A and higher Us and transpiration rates. There were no statistical differences in A, gs and transpiration rates ill plants with and Without water deficit. The addition of K reduced the consumption of water per unit of leaf area and, in general, plants submitted to water deficit presented a lower consumption of water.