896 resultados para SILICA MATRICES
Resumo:
In this work, a silica surface chemically modified with [3-(2,2′-dipyridylamine)propyl] groups, named [3-(2,2′- dipyridylamine)propyl]silica (Si-Pr-DPA) was prepared, characterized, and evaluated for its heavy metal adsorption characteristics from aqueous solution. To our knowledge, we are the first authors who have reported the present modification. The material was characterized using infrared spectroscopy, SEM, and NMR 29Si and 13C solid state. Batch and column experiments were conducted to investigate for heavy metal removal from dilute aqueous solution by sorption onto Si-Pr-DPA. From a number of studies the affinity of various metal ions for the Si-Pr-DPA sorbent was determined to follow the order Fe(III) > Cr(III) >> Cu(II) > Cd(II) > Pb(II) > Ni(II). Two standard reference materials were used for checking the accuracy and precision of the method. The proposed method was successfully applied to the analysis of environmental samples. This ligand material has great advantage for adsorption of transition-metal ions from aqueous medium due to its high degree of organofunctionalization associated with the large adsorption capacity, reutilization possibility, and rapidity in reaching the equilibrium. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A silica surface chemically modified with [3-(2,2'-dipyridylamine) propyl] groups was prepared, characterized, and evaluated for its metal ion preconcentration in fuel ethanol. To our knowledge, we are the first authors who have reported the present modification on silica gel surface. The material was characterized using infrared spectra, scanning electronic microscopy, and 13C and 29Si solid-state NMR spectra. Batch and column experiments were conducted to investigate for metal ion removal from fuel ethanol. The results showed that the Langmuir model describes the sorption equilibrium data of the metal ions in a satisfactory way. From the Langmuir isotherms, the following maximum adsorption capacities (in mmolg -1) were determined: 1.81 for Fe(III), 1.75 for Cr(III), 1.30 for Cu(II), 1.25 for Co(II), 1.15 for Pb(II), 0.95 for Ni(II), and 0.87 for Zn(II). Thermodynamic functions, the change of free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) showed that the adsorption of metal ions onto Si-Pr-DPA was feasible, spontaneous, and endothermic. The sorption-desorption of the metal ions made possible the development of a preconcentration and quantification method of metal ions in fuel ethanol. © 2012 Elsevier Inc.
Resumo:
Most of the established procedures for analysis of aeroelastic flutter in the development of aircraft are based on frequency domain methods. Proposing new methodologies in this field is always a challenge, because the new methods need to be validated by many experimental procedures. With the interest for new flight control systems and nonlinear behavior of aeroelastic structures, other strategies may be necessary to complete the analysis of such systems. If the aeroelastic model can be written in time domain, using state-space formulation, for instance, then many of the tools used in stability analysis of dynamic systems may be used to help providing an insight into the aeroelastic phenomenon. In this respect, this paper presents a discussion on the use of Gramian matrices to determine conditions of aeroelastic flutter. The main goal of this work is to introduce how observability gramian matrix can be used to identify the system instability. To explain the approach, the theory is outlined and simulations are carried out on two benchmark problems. Results are compared with classical methods to validate the approach and a reduction of computational time is obtained for the second example. © 2013 Douglas Domingues Bueno et al.
Resumo:
A new highly luminescent europium complex with the formula [Eu(TTA) 3(Bpy-Si)], where TTA stands for the thenoyltrifluoroacetone, (C 4H3S)COCH2COCF3, chelating ligand and Bpy-Si, Bpy-CH2NH(CH2)3Si(OEt)3, is an organosilyldipyridine ligand displaying a triethoxysilyl group as a grafting function has been synthesized and fully characterized. This bifunctional complex has been grafted onto the surface of dense silica nanoparticles (NPs) and on mesoporous silica microparticles as well. The covalent bonding of [Eu(TTA)3(Bpy-Si)] inside uniform Stöber silica nanoparticles was also achieved. The general methodology proposed could be applied to any silica matrix, allowed high grafting ratios that overcome chelate release and the tendency to agglomerate. Luminescent silica-based nanoparticles SiO2-[Eu(TTA)3(Bpy-Si)], with a diameter of 28 ± 2 nm, were successfully tested as a luminescent labels for the imaging of Pseudomonas aeruginosa biofilms. They were also functionalized by a specific monoclonal antibody and subsequently employed for the selective imaging of Escherichia coli bacteria. © 2013 American Chemical Society.
Resumo:
The objective of this research was the preparation of a silica gel functionalized successively with 3-chloropropyltrimethoxysilane (SG-PrCl) and thiourea (SG-Pr-THIO), and its application in adsorption and catalysis. The materials were characterized by 13C and 29Si NMR, FTIR, scanning electron micrographs (SEM), analysis of nitrogen and elemental analysis. Aiming at its application in adsorption, the [3-(thiourea)-propyl] silica gel (SG-Pr-THIO) was tested as an adsorbent for transition-metal ions using a batchwise process. The organofunctionalized surface showed the ability to adsorb the metal ions Cd(ii), Cu(ii), Ni(ii), Pb(ii) and Co(ii) from water, ethanol and acetone. The adsorption isotherms were fitted by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) models. The kinetics of adsorption of metals were performed using three models such as pseudo-first order, pseudo-second order and Elovich. The Langmuir and pseudo-first order models were the most appropriate to describe the adsorption and kinetic data, respectively. With the purpose of application in catalysis, the SG-Pr-THIO was reacted with a Mo(ii) organometallic complex, forming the new material SG-Pr-THIO-Mo. Only a few works in the literature have reported this type of reaction, and none dealt with thiourea and Mo(ii) complexes. The new Mo-silica gel organometallic material was tested as catalyst in the epoxidation of cyclooctene and styrene. © 2013 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.
Resumo:
Luminescent silica nanoparticles are frequently employed for biotechnology applications mainly because of their easy functionalization, photo-stability, and biocompatibility. Bifunctional silica nanoparticles (BSNPs) are described here as new efficient tools for investigating complex biological systems such as biofilms. Photoluminescence is brought about by the incorporation of a silylated ruthenium(II) complex. The surface properties of the silica particles were designed by reaction with amino-organosilanes, quaternary ammonium-organosilanes, carboxylate-organosilanes and hexamethyldisilazane. BSNPs were characterized extensively by DRIFT, 13C and 29Si solid state NMR, XPS, and photoluminescence. Zeta potential and contact angle measurements exhibited various surface properties (hydrophilic/hydrophobic balance and electric charge) according to the functional groups. Confocal laser scanning microscopy (CLSM) measurements showed that the spatial distribution of these nanoparticles inside a biofilm of Pseudomonas aeruginosa PAO1 depends more on their hydrophilic/hydrophobic characteristics than on their size. CLSM observations using two nanosized particles (25 and 68 nm) suggest that narrow diffusion paths exist through the extracellular polymeric substances matrix. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Given a strongly regular Hankel matrix, and its associated sequence of moments which defines a quasi-definite moment linear functional, we study the perturbation of a fixed moment, i.e., a perturbation of one antidiagonal of the Hankel matrix. We define a linear functional whose action results in such a perturbation and establish necessary and sufficient conditions in order to preserve the quasi-definite character. A relation between the corresponding sequences of orthogonal polynomials is obtained, as well as the asymptotic behavior of their zeros. We also study the invariance of the Laguerre-Hahn class of linear functionals under such perturbation, and determine its relation with the so-called canonical linear spectral transformations. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The mineral phase of dentin is located primarily within collagen fibrils. During development, bone or dentin collagen fibrils are formed first and then water within the fibril is replaced with apatite crystallites. Mineralized collagen contains very little water. During dentin bonding, acid-etching of mineralized dentin solubilizes the mineral crystallites and replaces them with water. During the infiltration phase of dentin bonding, adhesive comonomers are supposed to replace all of the collagen water with adhesive monomers that are then polymerized into copolymers. The authors of a recently published review suggested that dental monomers were too large to enter and displace water from collagen fibrils. If that were true, the endogenous proteases bound to dentin collagen could be responsible for unimpeded collagen degradation that is responsible for the poor durability of resin-dentin bonds. The current work studied the size-exclusion characteristics of dentin collagen, using a gel-filtration-like column chromatography technique, using dentin powder instead of Sephadex. The elution volumes of test molecules, including adhesive monomers, revealed that adhesive monomers smaller than ∼1000 Da can freely diffuse into collagen water, while molecules of 10,000 Da begin to be excluded, and bovine serum albumin (66,000 Da) was fully excluded. These results validate the concept that dental monomers can permeate between collagen molecules during infiltration by etch-and-rinse adhesives in water-saturated matrices. © 2013 Acta Materialia Inc.
Resumo:
The aim of this work was the preparation of inorganic mesoporous materials from silica, calcium phosphate and a nonionic surfactant and to evaluate the incorporation and release of different concentrations of osteogenic growth peptide (OGP) for application in bone regeneration. The adsorption and release of the labeled peptide with 5,6-carboxyfluorescein (OGP-CF) from the mesoporous matrix was monitored by fluorescence spectroscopy. The specific surface area was 880 and 484 m2 g- 1 for pure silica (SiO) and silica/apatite (SiCaP), respectively; the area influenced the percentage of incorporation of the peptide. The release of OGP-CF from the materials in simulated body fluid (SBF) was dependent on the composition of the particles, the amount of incorporated peptide and the degradation of the material. The release of 50% of the peptide content occurred at around 4 and 30 h for SiCaP and SiO, respectively. In conclusion, the materials based on SiO and SiCaP showed in vitro bioactivity and degradation; thus, these materials should be considered as alternative biomaterials for bone regeneration. © 2013 Elsevier B.V.
Resumo:
Incluye Bibliografía
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)