994 resultados para Retz, cardinal de (1613-1679)
Resumo:
Accurate modeling of gas microflow is crucial for the microfluidic devices in MEMS. Gas microflows through these devices are often in the slip and transition flow regimes, characterized by the Knudsen number of the order of 10-2∼100. An increasing number of researchers now dedicate great attention to the developments in the modeling of non-equilibrium boundary conditions in the gas microflows, concentrating on the slip model. In this review, we present various slip models obtained from different theoretical, computational and experimental studies for gas microflows. Correct descriptions of the Knudsen layer effect are of critical importance in modeling and designing of gas microflow systems and in predicting their performances. Theoretical descriptions of the gas-surface interaction and gas-surface molecular interaction models are introduced to describe the boundary conditions. Various methods and techniques for determination of the slip coefficients are reviewed. The review presents the considerable success in the implementation of various slip boundary conditions to extend the Navier-Stokes (N-S) equations into the slip and transition flow regimes. Comparisons of different values and formulations of the first- and second-order slip coefficients and models reveal the discrepancies arising from different definitions in the first-order slip coefficient and various approaches to determine the second-order slip coefficient. In addition, no consensus has been reached on the correct and generalized form of higher-order slip expression. The influences of specific effects, such as effective mean free path of the gas molecules and viscosity, surface roughness, gas composition and tangential momentum accommodation coefficient, on the hybrid slip models for gas microflows are analyzed and discussed. It shows that although the various hybrid slip models are proposed from different viewpoints, they can contribute to N-S equations for capturing the high Knudsen number effects in the slip and transition flow regimes. Future studies are also discussed for improving the understanding of gas microflows and enabling us to exactly predict and actively control gas slip. © Springer-Verlag 2012.
Resumo:
Background: Bradykinesia is a cardinal feature of Parkinson's disease (PD). Despite its disabling impact, the precise cause of this symptom remains elusive. Recent thinking suggests that bradykinesia may be more than simply a manifestation of motor slowness, and may in part reflect a specific deficit in the operation of motivational vigour in the striatum. In this paper we test the hypothesis that movement time in PD can be modulated by the specific nature of the motivational salience of possible action-outcomes. Methodology/Principal Findings: We developed a novel movement time paradigm involving winnable rewards and avoidable painful electrical stimuli. The faster the subjects performed an action the more likely they were to win money (in appetitive blocks) or to avoid a painful shock (in aversive blocks). We compared PD patients when OFF dopaminergic medication with controls. Our key finding is that PD patients OFF dopaminergic medication move faster to avoid aversive outcomes (painful electric shocks) than to reap rewarding outcomes (winning money) and, unlike controls, do not speed up in the current trial having failed to win money in the previous one. We also demonstrate that sensitivity to distracting stimuli is valence specific. Conclusions/Significance: We suggest this pattern of results can be explained in terms of low dopamine levels in the Parkinsonian state leading to an insensitivity to appetitive outcomes, and thus an inability to modulate movement speed in the face of rewards. By comparison, sensitivity to aversive stimuli is relatively spared. Our findings point to a rarely described property of bradykinesia in PD, namely its selective regulation by everyday outcomes. © 2012 Shiner et al.
Resumo:
A new version of the Multi-objective Alliance Algorithm (MOAA) is described. The MOAA's performance is compared with that of NSGA-II using the epsilon and hypervolume indicators to evaluate the results. The benchmark functions chosen for the comparison are from the ZDT and DTLZ families and the main classical multi-objective (MO) problems. The results show that the new MOAA version is able to outperform NSGA-II on almost all the problems.
Resumo:
Ultra-smooth nanocrystalline diamond (UNCD) films with high-acoustic wave velocity were introduced into ZnO-based surface acoustic wave (SAW) devices to enhance their microfluidic efficiency by reducing the acoustic energy dissipation into the silicon substrate and improving the acoustic properties of the SAW devices. Microfluidic efficiency of the ZnO-based SAW devices with and without UNCD inter layers was investigated and compared. Results showed that the pumping velocities increase with the input power and those of the ZnO/UNCD/Si devices are much larger than those of the ZnO/Si devices at the same power. The jetting efficiency of the droplet was improved by introducing the UNCD interlayer into the ZnO/Si SAW device. Improvement in the microfluidic efficiency is mainly attributed to the diamond layer, which restrains the acoustic wave to propagate in the top layer rather than dissipating into the substrate. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Coupling coefficient is an important parameter for distributed feedback lasers. Modified coupled-wave equations are used to calculate the effect of grating shape on coupling coefficient of the second-order gratings. Corresponding devices demonstrate that the maximum kink-free power per facet reaches 50 mW and the sidemode suppression ratio is 36 dB.
Resumo:
A Schottky-based metal-semiconductor-metal photodetector is fabricated on 1 mu m-thick, crack-free GaN on Si (I 11) substrate using an optimized AlxGal-xN/AlN complex buffer layer. It exhibits a high responsivity of 4600A/W at 366nm which may be due to both a crack-free sample and high internal gain. The relationship between responsivity and bias voltage is also investigated. The experiment results indicate that the responsivity increases with the bias voltage and shows a tendency to saturate. (c) 2007 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim.
Resumo:
本文采用几何形态测量的方法对产自和政地区的鬣狗科Hyaenictitherium, Ictitherium, Adcrocuta和旁鬣狗科Dinocrocuta的材料进行研究,分析了这4个属保存完好的头骨标本的侧面形态。与东非大草原现生食肉动物的头骨整体形态分布的比较和分析表明,和政的鼬鬣狗(Ictitherium)和鬣型鼬鬣狗(Hyaenictitherium)的头骨形状分布介于现生斑鬣狗(Crocuta crocuta)、犬科猎狗(Lycaon pictus)和金豺(Canis aureus)之间,为二者似豺生态形态的解释提供了几何形态测量证据。再者,上述两属化石鬣狗的形状分布与现生斑鬣狗的幼年个体形状重叠,表明现生斑鬣狗头骨的发育机制可能是在鼬鬣狗祖先类型的异速生长规律基础上的持续发育,进而演化出现有的粗壮形态。此外,巨鬣狗(Dinocrocuta)和副鬣狗(Adcrocuta)的头骨形状与现生的斑鬣狗在几何形态测量空间内有普遍重叠的现象,指示了这些异时出现的种类具有相似的生态形态,因而可能占据相近的生态位。结果还显示巨鬣狗和斑鬣狗的幼年个体形状相近,以及两者从幼年到成年发育的形状变化过程也具有相似的规律。因而,巨鬣狗和斑鬣狗之间的趋同演化不仅表现在成年头骨的粗壮程度上,而且在幼年发育模式中也存在平行演化现象。现生发育学与行为生态学已经证实,相对其他大型食肉动物,现生斑鬣狗发育粗壮头骨形态的机制不是以增速生长,而是以延长发育期来实现的。由此推断,巨鬣狗的发育期有可能和现生鬣狗相当(35个月),也可能由于具有相对粗壮和巨大的头骨形态,其发育期会延长些。当然,这个新解释仍需要更多的化石数据和发育研究来证实。
Resumo:
对于分布反馈激光器来说,光栅的耦合系数是一个重要参数. 利用改进的耦合波理论计算了具体器件结构中光栅形貌对二级光栅耦合系数的影响. 在此基础上制作的器件功率达到了单面50 mW,边模抑制比为36 dB.
Resumo:
本文在前人工作的基础上,对东北产千里光属Senecio植物进行了形态分类、花解剖及花粉形成结构的研究。结果表明:1. 华千里光组Sect. Sinosenecio和狗舌草组sect. Tephroseris在形态和花结构上与千里光属Senecio植物有显著差异,应从千里光属中独立出来,自立为属,即:华千里光属Sinosenecio对狗舌草属Tephroseriso 2. 东北产华千里光属只有一种,即朝鲜千里光Sinosenecio Koreanus (Kom.) B. Nord。3. 东北产狗舌草属分为2组,共5种1变型,其中T. Campestris (Retz.) Reichb.f.spathulatus (Miq.) R. yin et C. y. Li为新组合,并订正了狗舌草T. campestris (Retz.) Reichb的拉丁名。4. 东北产千里光属分为2组,共5种,2变种1变型。5. 狗舌草属和千里光属花粉形态基本相似,都为球形,表面具刺,3孔沟型。花粉形成不能作为划分属的依据。本文还详细描述了每个种的形态学特征,地理分布和文献考证,并附有每个种的叶形。花解剖图及花粉的扫描电镜、光镜照片。还有分属及分种检索表。