981 resultados para Regulatory Elements
Resumo:
The rapid increase in genome sequence information has necessitated the annotation of their functional elements, particularly those occurring in the non-coding regions, in the genomic context. Promoter region is the key regulatory region, which enables the gene to be transcribed or repressed, but it is difficult to determine experimentally. Hence an in silico identification of promoters is crucial in order to guide experimental work and to pin point the key region that controls the transcription initiation of a gene. In this analysis, we demonstrate that while the promoter regions are in general less stable than the flanking regions, their average free energy varies depending on the GC composition of the flanking genomic sequence. We have therefore obtained a set of free energy threshold values, for genomic DNA with varying GC content and used them as generic criteria for predicting promoter regions in several microbial genomes, using an in-house developed tool `PromPredict'. On applying it to predict promoter regions corresponding to the 1144 and 612 experimentally validated TSSs in E. coli (50.8% GC) and B. subtilis (43.5% GC) sensitivity of 99% and 95% and precision values of 58% and 60%, respectively, were achieved. For the limited data set of 81 TSSs available for M. tuberculosis (65.6% GC) a sensitivity of 100% and precision of 49% was obtained.
Resumo:
Brain function is critically dependent on the ionic homeostasis in both the extra- and intracellular compartment. The regulation of brain extracellular ionic composition mainly relies on active transport at blood brain and at blood cerebrospinal fluid interfaces whereas intracellular ion regulation is based on plasmalemmal transporters of neurons and glia. In addition, the latter mechanisms can generate physiologically as well as pathophysiologically significant extracellular ion transients. In this work I have studied molecular mechanisms and development of ion regulation and how these factors alter neuronal excitability and affect synaptic and non-synaptic transmission with a particular emphasis on intracellular pH and chloride (Cl-) regulation. Why is the regulation of acid-base equivalents (H+ and HCO3-) and Cl- of such interest and importance? First of all, GABAA-receptors are permeable to both HCO3- and Cl-. In the adult mammalian central nervous system (CNS) fast postsynaptic inhibition relies on GABAA-receptor mediated transmission. Today, excitatory effects of GABAA-receptors, both in mature neurons and during the early development, have been recognized and the significance of the dual actions of GABA on neuronal communication has become an interesting field of research. The transmembrane gradients of Cl- and HCO3- determine the reversal potential of GABAA-receptor mediated postsynaptic potentials and hence, the function of pH and Cl- regulatory proteins have profound consequences on GABAergic signaling and neuronal excitability. Secondly, perturbations in pH can cause a variety of changes in cellular function, many of them resulting from the interaction of protons with ionizable side chains of proteins. pH-mediated alterations of protein conformation in e.g. ion channels, transporters, and enzymes can powerfully modulate neurotransmission. In the context of pH homeostasis, the enzyme carbonic anhydrase (CA) needs to be taken into account in parallel with ion transporters: for CO2/HCO3- buffering to act in a fast manner, CO2 (de)hydration must be catalyzed by this enzyme. The acid-base equivalents that serve as substrates in the CO2 dehydration-hydration reaction are also engaged in many carrier and channel mediated ion movements. In such processes, CA activity is in key position to modulate transmembrane solute fluxes and their consequences. The bicarbonate transporters (BTs; SLC4) and the electroneutral cation-chloride cotransporters (CCCs; SLC12) belong the to large gene family of solute carriers (SLCs). In my work I have studied the physiological roles of the K+-Cl- cotransporter KCC2 (Slc12a5) and the Na+-driven Cl--HCO3- exchanger NCBE (Slc4a10) and the roles of these two ion transporters in the modualtion of neuronal communication and excitability in the rodent hippocampus. I have also examined the cellular localization and molecular basis of intracellular CA that has been shown to be essential for the generation of prolonged GABAergic excitation in the mature hippocampus. The results in my Thesis provide direct evidence for the view that the postnatal up-regulation of KCC2 accounts for the developmental shift from depolarizing to hyperpolarizing postsynaptic EGABA-A responses in rat hippocampal pyramidal neurons. The results also indicate that after KCC2 expression the developmental onset of excitatory GABAergic transmission upon intense GABAA-receptor stimulation depend on the expression of intrapyramidal CA, identified as the CA isoform VII. Studies on mice with targeted Slc4a10 gene disruption revealed an important role for NCBE in neuronal pH regulation and in pH-dependent modulation of neuronal excitability. Furthermore, this ion transporter is involved in the basolateral Na+ and HCO3- uptake in choroid plexus epithelial cells, and is thus likely to contribute to cerebrospinal fluid production.
Resumo:
The bgl operon of Escherichia coil is transcriptionally inactive in wild-type cells. DNA insertion sequences (IS) constitute a major class of spontaneous mutations that activate the cryptic bgl promoter. In an attempt to study the molecular mechanism of activation mediated by insertion sequences, transcription of the bgl promoter was carried out in vitro. Stimulation of transcription is observed when a plasmid containing an insertionally activated bgl promoter is used as a template in the absence of proteins other than RNA polymerase. Deletions that remove sequences upstream of the bgl promoter, and insertion of a 1.2 kb DNA fragment encoding resistance to kanamycin, activate the promoter. Point mutations within a region of dyad symmetry upstream of the promoter, which has the potential to extrude into a cruciform structure under torsional stress, also lead to activation, Introduction of a sequence with dyad symmetry, upstream of an activated bgl promoter carrying a deletion of upstream sequences, results in a fourfold reduction in transcription, These results suggest that the cryptic nature of the bgl promoter is because of the presence of DNA structural elements near the promoter that negatively affect transcription.
Resumo:
The angular-momentum flux from an inspiralling binary system of compact objects moving in quasi-elliptical orbits is computed at the third post-Newtonian (3PN) order using the multipolar post-Minkowskian wave generation formalism. The 3PN angular-momentum flux involves the instantaneous, tail, and tail-of-tails contributions as for the 3PN energy flux, and in addition a contribution due to nonlinear memory. We average the angular-momentum flux over the binary's orbit using the 3PN quasi-Keplerian representation of elliptical orbits. The averaged angular-momentum flux provides the final input needed for gravitational-wave phasing of binaries moving in quasi-elliptical orbits. We obtain the evolution of orbital elements under 3PN gravitational radiation reaction in the quasi-elliptic case. For small eccentricities, we give simpler limiting expressions relevant for phasing up to order e(2). This work is important for the construction of templates for quasi-eccentric binaries, and for the comparison of post-Newtonian results with the numerical relativity simulations of the plunge and merger of eccentric binaries.
Resumo:
Road policing is an important tool used to modify road user behaviour. While other theories, such as deterrence theory, are significant in road policing, there may be a role for using procedural justice as a framework to improve outcomes in common police citizen interactions such as traffic law enforcement. This study, using a sample of 237 young novice drivers, considered how the four elements of procedural justice (voice, neutrality, respect and trustworthiness) were perceived in relation to two forms of speed enforcement: point-to-point (or average) speed and mobile speed cameras. Only neutrality was related to both speed camera types suggesting that it may be possible to influence behaviour by emphasising one or more elements, rather than using all components of procedural justice. This study is important as it indicates that including at least some elements of procedural justice in more automated policing encounters can encourage citizen compliance.
Resumo:
DNA topoisomerases are ubiquitous nuclear enzymes that govern the topological interconversions of DNA by transiently breaking/rejoining the phosphodiester backbone of one (type I) or both (type II) strands of the double helix. Consistent with these functions, topoisomerases play key roles in many aspects of DNA metabolism. Type II DNA topoisomerase (topo II) is vital for various nuclear processes, including DNA replication, chromosome segregation, and maintenance of chromosome structure. Topo II expression is regulated at multiple stages, including transcriptional, posttranscriptional, and posttranslational levels, by a multitude of signaling factors. Topo II is also the cellular target for a variety of clinically relevant anti-tumor drugs. Despite significant progress in our understanding of the role of topo II in diverse nuclear processes, several important aspects of topo II function, expression, and regulation are poorly understood. We have focused this review specifically on eukaryotic DNA topoisomerase II, with an emphasis on functional and regulatory characteristics.
Resumo:
The influence of fructose 2,6-bisphosphate on the activation of purified swine kidney phosphofructokinase as a function of the concentration of fructose 6P, ATP and citrate was investigated. The purified enzyme was nearly completely inhibited in the presence of 2 mM ATP. The addition of 20 nM fructose 2,6-P2 reversed the inhibition and restored more than 80% of the activity. In the absence of fructose 2,6-P2 the reaction showed a sigmoidal dependence on fructose-6-phosphate. The addition of 10 nM fructose 2,6-bisphosphate decreased the K0.5 for fructose 6-phosphate from 3 mM to 0.4 mM in the presence of 1.5 mM ATP. These results clearly show that fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate and decreases the inhibitory effect of ATP. The extent of inhibition by citrate was also significantly decreased in the presence of fructose 2,6-phosphate. The influence of various effectors of phosphofructokinase on the binding of ATP and fructose 6-P to the enzyme was examined in gel filtration studies. It was found that kidney phosphofructokinase binds 5.6 moles of fructose 6-P per mole of enzyme, which corresponds to about one site per subunit of tetrameric enzyme. The KD for fructose 6-P was 13 microM and in the presence of 0.5 mM ATP it increased to 27 microM. The addition of 0.3 mM citrate also increased the KD for fructose 6-P to about 40 microM. AMP, 10 microM, decreased the KD to 5 microM and the addition of fructose 2,6-phosphate decreased the KD for fructose 6-P to 0.9 microM. The addition of these compounds did not effect the maximal amount of fructose 6-P bound to the enzyme, which indicated that the binding site for these compounds might be near, but was not identical to the fructose 6-P binding site. The enzyme bound a maximum of about 12.5 moles of ATP per mole, which corresponds to 3 moles per subunit. The KD of the site with the highest affinity for ATP was 4 microM, and it increased to 15 microM in the presence of fructose 2,6-bisphosphate. The addition of 50 microM fructose 1,6-bisphosphate increased the KD for ATP to 5.9 microM. AMP increased the KD to 5.9 microM whereas 0.3 mM citrate decreased the KD for ATP to about 2 microM.(ABSTRACT TRUNCATED AT 400 WORDS).
Resumo:
Complaints and disciplinary processes play a significant role in health professional regulation. Many countries are transitioning from models of self-regulation to greater external oversight through systems including meta regulation, responsive (risk–based) regulation, and “networked governance”. Such systems harness, in differing ways, public, private, professional and non-governmental bodies to exert influence over the conduct of health professionals and services. Interesting literature is emerging regarding complainants’ motivations and experiences, the impact of complaints processes on health professionals and identification of features such as complainant and health professional profiles, types of complaints and outcomes. This paper concentrates on studies identifying vulnerable groups and their participation in health care regulatory systems.
Resumo:
This paper presents a formulation of an approximate spectral element for uniform and tapered rotating Euler-Bernoulli beams. The formulation takes into account the varying centrifugal force, mass and bending stiffness. The dynamic stiffness matrix is constructed using the weak form of the governing differential equation in the frequency domain, where two different interpolating functions for the transverse displacement are used for the element formulation. Both free vibration and wave propagation analysis is performed using the formulated elements. The studies show that the formulated element predicts results, that compare well with the solution available in the literature, at a fraction of the computational effort. In addition, for wave propagation analysis, the element shows superior convergence. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Deep packet inspection is a technology which enables the examination of the content of information packets being sent over the Internet. The Internet was originally set up using “end-to-end connectivity” as part of its design, allowing nodes of the network to send packets to all other nodes of the network, without requiring intermediate network elements to maintain status information about the transmission. In this way, the Internet was created as a “dumb” network, with “intelligent” devices (such as personal computers) at the end or “last mile” of the network. The dumb network does not interfere with an application's operation, nor is it sensitive to the needs of an application, and as such it treats all information sent over it as (more or less) equal. Yet, deep packet inspection allows the examination of packets at places on the network which are not endpoints, In practice, this permits entities such as Internet service providers (ISPs) or governments to observe the content of the information being sent, and perhaps even manipulate it. Indeed, the existence and implementation of deep packet inspection may challenge profoundly the egalitarian and open character of the Internet. This paper will firstly elaborate on what deep packet inspection is and how it works from a technological perspective, before going on to examine how it is being used in practice by governments and corporations. Legal problems have already been created by the use of deep packet inspection, which involve fundamental rights (especially of Internet users), such as freedom of expression and privacy, as well as more economic concerns, such as competition and copyright. These issues will be considered, and an assessment of the conformity of the use of deep packet inspection with law will be made. There will be a concentration on the use of deep packet inspection in European and North American jurisdictions, where it has already provoked debate, particularly in the context of discussions on net neutrality. This paper will also incorporate a more fundamental assessment of the values that are desirable for the Internet to respect and exhibit (such as openness, equality and neutrality), before concluding with the formulation of a legal and regulatory response to the use of this technology, in accordance with these values.
Resumo:
Interferon-gamma (IFN gamma) is a central regulator of the immune response and signals via the Janus Activated Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT) pathway. Phosphorylated STAT1 homodimers translocate to the nucleus, bind to Gamma Activating Sequence (GAS) and recruit additional factors to modulate gene expression. A bioinformatics analysis revealed that greater number of putative promoters of immune related genes and also those not directly involved in immunity contain GAS compared to response elements (RE) for Interferon Regulatory Factor (IRF)1, Nuclear factor kappa B (NF kappa B) and Activator Protein (AP)1. GAS is present in putative promoters of well known IFN gamma-induced genes, IRF1, GBP1, CXCL10, and other genes identified were TLR3, VCAM1, CASP4, etc. Analysis of three microarray studies revealed that the expression of asubset of only GAS containing immune genes were modulated by IFN gamma. As a significant correlation exists between GAS containing immune genes and IFN gamma-regulated gene expression, this strategy may identify novel IFN gamma-responsive immune genes. This analysis is integrated with the literature on the roles of IFN gamma in mediating a plethoraof functions: anti-microbial responses, antigen processing,inflammation, growth suppression, cell death, tumor immunity and autoimmunity. Overall, this review summarizes our present knowledge onIFN gamma mediated signaling and functions. (C) 2009 Elsevier Ltd. All rights reserved.