997 resultados para Quantum spin Hall insulator


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an approach to the quantum-mechanical description of relativistic orientable objects. It generalizes Wigner`s ideas concerning the treatment of nonrelativistic orientable objects (in particular, a nonrelativistic rotator) with the help of two reference frames (space-fixed and body-fixed). A technical realization of this generalization (for instance, in 3+1 dimensions) amounts to introducing wave functions that depend on elements of the Poincar, group G. A complete set of transformations that test the symmetries of an orientable object and of the embedding space belongs to the group I =GxG. All such transformations can be studied by considering a generalized regular representation of G in the space of scalar functions on the group, f(x,z), that depend on the Minkowski space points xaG/Spin(3,1) as well as on the orientation variables given by the elements z of a matrix ZaSpin(3,1). In particular, the field f(x,z) is a generating function of the usual spin-tensor multi-component fields. In the theory under consideration, there are four different types of spinors, and an orientable object is characterized by ten quantum numbers. We study the corresponding relativistic wave equations and their symmetry properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the possibility of implementing a universal quantum XOR gate by using two coupled quantum dots subject to external magnetic fields that are parallel and slightly different. We consider this system in two different field configurations. In the first case, parallel external fields with the intensity difference at each spin being proportional to the time-dependent interaction between the spins. A general exact solution describing this system is presented and analyzed to adjust field parameters. Then we consider parallel fields with intensity difference at each spin being constant and the interaction between the spins switching on and off adiabatically. In both cases we adjust characteristics of the external fields (their intensities and duration) in order to have the parallel pulse adequate for constructing the XOR gate. In order to provide a complete theoretical description of all the cases, we derive relations between the spin interaction, the inter-dot distance, and the external field. (C) 2008 WILEYNCH Verlag GmbH & Co. KGaA. Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stability of the quantized Hall phases is studied in weakly coupled multilayers as a function of the interlayer correlations controlled by the interlayer tunneling and by the random variation of the well thicknesses. A strong enough interlayer disorder destroys the symmetry responsible for the quantization of the Hall conductivity, resulting in the breakdown of the quantum Hall effect. A clear difference between the dimensionalities of the metallic and insulating quantum Hall phases is demonstrated. The sharpness of the quantized Hall steps obtained in the coupled multilayers with different degrees of randomization was found consistent with the calculated interlayer tunneling energies. The observed width of the transition between the quantized Hall states in random multilayers is explained in terms of the local fluctuations of the electron density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magneto-capacitance was studied in narrow miniband GaAs/AlGaAs superlattices where quasi-two dimensional electrons revealed the integer quantum Hall effect. The interwell tunneling was shown to reduce the effect of the quantization of the density of states on the capacitance of the superlattices. In such case the minimum of the capacitance observed at the filling factor nu = 2 was attributed to the decrease of the electron compressibility due to the formation of the incompressible quantized Hall phase. In accord with the theory this phase was found strongly inhomogeneous. The incompressible fraction of the quantized Hall phase was demonstrated to rapidly disappear with the increasing temperature. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the interlayer coupling on formation of the quantized Hall conductor phase at the filling factor v = 2 was studied in the multi-layer GaAs/AlGaAs heterostructures. The disorder broadened Gaussian photoluminescence line due to the localized electrons was found in the quantized Hall phase of the isolated multi-quantum well structure. On the other hand, the quantized Hall phase of the weakly coupled multi-layers emitted an unexpected asymmetrical line similar to that one observed in the metallic electron systems. We demonstrated that the observed asymmetry is caused by a partial population of the extended electron states formed in the quantized Hall conductor phase due to the interlayer percolation. A sharp decrease of the single-particle scattering time associated with these extended states was observed at the filling factor v = 2. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the combined influence of quenched randomness and dissipation on a quantum critical point with O(N) order-parameter symmetry. Utilizing a strong-disorder renormalization group, we determine the critical behavior in one space dimension exactly. For super-ohmic dissipation, we find a Kosterlitz-Thouless type transition with conventional (power-law) dynamical scaling. The dynamical critical exponent depends on the spectral density of the dissipative baths. We also discuss the Griffiths singularities, and we determine observables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply the master equation technique to calculate shot noise in a system composed of single level quantum dot attached to a normal metal lead and to a ferromagnetic lead (NM-QD-FM). It is known that this system operates as a spin-diode, giving unpolarized currents for forward bias and polarized current for reverse bias. This effect is observed when only one electron can tunnel at a time through the dot, due to the strong intradot Coulomb interaction. We find that the shot noise also presents a signature of this spin-diode effect, with a super-Poissonian shot noise for forward and a sub-Poissonian shot noise for reverse bias voltages. The shot noise thus can provide further experimental evidence of the spin-rectification in the NM-QD-FM geometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the quantum Hall regime, the longitudinal resistivity rho (xx) plotted as a density-magnetic-field (n (2D) -B) diagram displays ringlike structures due to the crossings of two sets of spin split Landau levels from different subbands [see, e.g., Zhang et al., in Phys. Rev. Lett. 95:216801, 2005. For tilted magnetic fields, some of these ringlike structures ""shrink"" as the tilt angle is increased and fully collapse at theta (c) a parts per thousand 6A degrees. Here we theoretically investigate the topology of these structures via a non-interacting model for the 2DEG. We account for the inter Landau-level coupling induced by the tilted magnetic field via perturbation theory. This coupling results in anticrossings of Landau levels with parallel spins. With the new energy spectrum, we calculate the corresponding n (2D) -B diagram of the density of states (DOS) near the Fermi level. We argue that the DOS displays the same topology as rho (xx) in the n (2D) -B diagram. For the ring with filling factor nu=4, we find that the anticrossings make it shrink for increasing tilt angles and collapse at a large enough angle. Using effective parameters to fit the theta=0A degrees data, we find a collapsing angle theta (c) a parts per thousand 3.6A degrees. Despite this factor-of-two discrepancy with the experimental data, our model captures the essential mechanism underlying the ring collapse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we use Nuclear Magnetic Resonance (NMR) to write electronic states of a ferromagnetic system into high-temperature paramagnetic nuclear spins. Through the control of phase and duration of radio frequency pulses, we set the NMR density matrix populations, and apply the technique of quantum state tomography to experimentally obtain the matrix elements of the system, from which we calculate the temperature dependence of magnetization for different magnetic fields. The effects of the variation of temperature and magnetic field over the populations can be mapped in the angles of spin rotations, carried out by the RF pulses. The experimental results are compared to the Brillouin functions of ferromagnetic ordered systems in the mean field approximation for two cases: the mean field is given by (i) B = B(0) + lambda M and (ii) B = B(0) + lambda M + lambda`M(3), where B(0) is the external magnetic field, and lambda, lambda` are mean field parameters. The first case exhibits second order transition, whereas the second case has first order transition with temperature hysteresis. The NMR simulations are in good agreement with the magnetic predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reports a relaxation study in an oriented system containing spin 3/2 nuclei using quantum state tomography (QST). The use of QST allowed evaluating the time evolution of all density matrix elements starting from several initial states. Using an appropriated treatment based on the Redfield theory, the relaxation rate of each density matrix element was measured and the reduced spectral densities that describe the system relaxation were determined. All the experimental data could be well described assuming pure quadrupolar relaxation and reduced spectral densities corresponding to a superposition of slow and fast motions. The data were also analyzed in the context of Quantum Information Processing, where the coherence loss of each qubit of the system was determined using the partial trace operation. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, we investigate the quantum thermal entanglement in molecular magnets composed of dimers of spin S, using an Entanglement Witness built from measurements of magnetic susceptibility. An entanglement temperature, T(e), is then obtained for some values of spin S. From this, it is shown that T(e) is proportional to the intradimer exchange interaction J and that entanglement appears only for antiferromagnetic coupling. The results are compared to experiments carried on three isostructural materials: KNaMSi(4)O(10) (M=Mn, Fe or Cu). Copyright (C) EPLA, 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical mechanism of the (1)PN formation was successfully studied by using the CCSD(T)/6-311++G(3df,3pd) level of theory. The (1)NH(3) + (3)PH and (4)P + NH(3) reaction paths are not energetically favorable to form the (1)PN molecule. However, the (3)NH + (3)PH, (4)N + (3)PH(3), (4)N + (3)PH, (4)P + (3)NH, and (4)P + (2)NH(2) reaction paths to form the (1)PN molecule are only energetically favorable by taking place through specific transition states to form the (1)PN molecule. The NH(3) + (3)PH, (4)N + (1)PH(3), NH(3) + (4)P, and (4)N + (2)PH(2) reactions are spin-forbidden and the probability of hopping for these reactions was estimated to be 0 by the Landau-Zener theory. This is the first detailed study on the chemical mechanism for the (1)PN formation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)