945 resultados para Probability Distribution Function
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the instrumental records of daily precipitation, we often encounter one or more periods in which values below some threshold were not registered. Such periods, besides lacking small values, also have a large number of dry days. Their cumulative distribution function is shifted to the right in relation to that for other portions of the record having more reliable observations. Such problems are examined in this work, based mostly on the two-sample Kolmogorov–Smirnov (KS) test, where the portion of the series with more number of dry days is compared with the portion with less number of dry days. Another relatively common problem in daily rainfall data is the prevalence of integers either throughout the period of record or in some part of it, likely resulting from truncation during data compilation prior to archiving or by coarse rounding of daily readings by observers. This problem is identified by simple calculation of the proportion of integers in the series, taking the expected proportion as 10%. The above two procedures were applied to the daily rainfall data sets from the European Climate Assessment (ECA), Southeast Asian Climate Assessment (SACA), and Brazilian Water Resources Agency (BRA). Taking the statistic D of the KS test >0.15 and the corresponding p-value <0.001 as the condition to classify a given series as suspicious, the proportions of the ECA, SACA, and BRA series falling into this category are, respectively, 34.5%, 54.3%, and 62.5%. With relation to coarse rounding problem, the proportions of series exceeding twice the 10% reference level are 3%, 60%, and 43% for the ECA, SACA, and BRA data sets, respectively. A simple way to visualize the two problems addressed here is by plotting the time series of daily rainfall for a limited range, for instance, 0–10 mm day−1.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
When assessing food intake patterns in groups of individuals, a major problem is finding usual intake distribution. This study aimed at searching for a probability distribution to estimate the usual intake of nutrients using data from a cross-sectional investigation on nutrition students from a public university in São Paulo state, Brazil. Data on 119 women aged 19 to 30 years old were used. All women answered a questionnaire about their lifestyle, diet and demographics. Food intake was evaluated from a non-consecutive three-day 24-hour food record. Different probability distributions were tested for vitamins C and E, panthotenic acid, folate, zinc, copper and calcium where data normalization was not possible. Empirical comparisons were performed, and inadequacy prevalence was calculated by comparing with the NRC method. It was concluded that if a more realistic distribution for usual intake is found, results can be more accurate as compared to those achieved by other methods.
Resumo:
The enzymatically catalyzed template-directed extension of ssDNA/primer complex is an impor-tant reaction of extraordinary complexity. The DNA polymerase does not merely facilitate the insertion of dNMP, but it also performs rapid screening of substrates to ensure a high degree of fidelity. Several kinetic studies have determined rate constants and equilibrium constants for the elementary steps that make up the overall pathway. The information is used to develop a macro-scopic kinetic model, using an approach described by Ninio [Ninio J., 1987. Alternative to the steady-state method: derivation of reaction rates from first-passage times and pathway probabili-ties. Proc. Natl. Acad. Sci. U.S.A. 84, 663–667]. The principle idea of the Ninio approach is to track a single template/primer complex over time and to identify the expected behavior. The average time to insert a single nucleotide is a weighted sum of several terms, in-cluding the actual time to insert a nucleotide plus delays due to polymerase detachment from ei-ther the ternary (template-primer-polymerase) or quaternary (+nucleotide) complexes and time delays associated with the identification and ultimate rejection of an incorrect nucleotide from the binding site. The passage times of all events and their probability of occurrence are ex-pressed in terms of the rate constants of the elementary steps of the reaction pathway. The model accounts for variations in the average insertion time with different nucleotides as well as the in-fluence of G+C content of the sequence in the vicinity of the insertion site. Furthermore the model provides estimates of error frequencies. If nucleotide extension is recognized as a compe-tition between successful insertions and time delaying events, it can be described as a binomial process with a probability distribution. The distribution gives the probability to extend a primer/template complex with a certain number of base pairs and in general it maps annealed complexes into extension products.
Resumo:
The lack of data records of electric power consumption of smallphotovoltaic home systems, independently of the method used for sizing them, drives to consider the demand as a constant. However, the existing data reveal the variability of the consumption due to the influences of some social, cultural and psychosocial aspects of the human groups. This paper presents records of consumption data obtainedfrom several solar home systems (SHSs) in Brazil and Peru, and it discusses about the Gamma distribution function that can express to a great extent the behaviour of the demand. By this analysis it was verified that `a lot of people consume little and few people consume a lot`. In that sense, a few recommendations for sizing procedures that can be useful in the implantation of extensive programmes of rural electrification by SHSs are presented. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
We report a morphology-based approach for the automatic identification of outlier neurons, as well as its application to the NeuroMorpho.org database, with more than 5,000 neurons. Each neuron in a given analysis is represented by a feature vector composed of 20 measurements, which are then projected into a two-dimensional space by applying principal component analysis. Bivariate kernel density estimation is then used to obtain the probability distribution for the group of cells, so that the cells with highest probabilities are understood as archetypes while those with the smallest probabilities are classified as outliers. The potential of the methodology is illustrated in several cases involving uniform cell types as well as cell types for specific animal species. The results provide insights regarding the distribution of cells, yielding single and multi-variate clusters, and they suggest that outlier cells tend to be more planar and tortuous. The proposed methodology can be used in several situations involving one or more categories of cells, as well as for detection of new categories and possible artifacts.
Resumo:
The nonequilibrium stationary state of an irreversible spherical model is investigated on hypercubic lattices. The model is defined by Langevin equations similar to the reversible case, but with asymmetric transition rates. In spite of being irreversible, we have succeeded in finding an explicit form for the stationary probability distribution, which turns out to be of the Boltzmann-Gibbs type. This enables one to evaluate the exact form of the entropy production rate at the stationary state, which is non-zero if the dynamical rules of the transition rates are asymmetric.
Resumo:
Context. The angular diameter distances toward galaxy clusters can be determined with measurements of Sunyaev-Zel'dovich effect and X-ray surface brightness combined with the validity of the distance-duality relation, D-L(z)(1 + z)(2)/D-A(z) = 1, where D-L(z) and D-A(z) are, respectively, the luminosity and angular diameter distances. This combination enables us to probe galaxy cluster physics or even to test the validity of the distance-duality relation itself. Aims. We explore these possibilities based on two different, but complementary approaches. Firstly, in order to constrain the possible galaxy cluster morphologies, the validity of the distance-duality relation (DD relation) is assumed in the Lambda CDM framework (WMAP7). Secondly, by adopting a cosmological-model-independent test, we directly confront the angular diameters from galaxy clusters with two supernovae Ia (SNe Ia) subsamples (carefully chosen to coincide with the cluster positions). The influence of the different SNe Ia light-curve fitters in the previous analysis are also discussed. Methods. We assumed that eta is a function of the redshift parametrized by two different relations: eta(z) = 1 +eta(0)z, and eta(z) = 1 + eta(0)z/(1 + z), where eta(0) is a constant parameter quantifying the possible departure from the strict validity of the DD relation. In order to determine the probability density function (PDF) of eta(0), we considered the angular diameter distances from galaxy clusters recently studied by two different groups by assuming elliptical and spherical isothermal beta models and spherical non-isothermal beta model. The strict validity of the DD relation will occur only if the maximum value of eta(0) PDF is centered on eta(0) = 0. Results. For both approaches we find that the elliptical beta model agrees with the distance-duality relation, whereas the non-isothermal spherical description is, in the best scenario, only marginally compatible. We find that the two-light curve fitters (SALT2 and MLCS2K2) present a statistically significant conflict, and a joint analysis involving the different approaches suggests that clusters are endowed with an elliptical geometry as previously assumed. Conclusions. The statistical analysis presented here provides new evidence that the true geometry of clusters is elliptical. In principle, it is remarkable that a local property such as the geometry of galaxy clusters might be constrained by a global argument like the one provided by the cosmological distance-duality relation.
Resumo:
The cellular rheology has recently undergone a rapid development with particular attention to the cytoskeleton mechanical properties and its main components - actin filaments, intermediate filaments, microtubules and crosslinked proteins. However it is not clear what are the cellular structural changes that directly affect the cell mechanical properties. Thus, in this work, we aimed to quantify the structural rearrangement of these fibers that may emerge in changes in the cell mechanics. We created an image analysis platform to study smooth muscle cells from different arteries: aorta, mammary, renal, carotid and coronary and processed respectively 31, 29, 31, 30 and 35 cell image obtained by confocal microscopy. The platform was developed in Matlab (MathWorks) and it uses the Sobel operator to determine the actin fiber image orientation of the cell, labeled with phalloidin. The Sobel operator is used as a filter capable of calculating the pixel brightness gradient, point to point, in the image. The operator uses vertical and horizontal convolution kernels to calculate the magnitude and the angle of the pixel intensity gradient. The image analysis followed the sequence: (1) opens a given cells image set to be processed; (2) sets a fix threshold to eliminate noise, based on Otsu's method; (3) detect the fiber edges in the image using the Sobel operator; and (4) quantify the actin fiber orientation. Our first result is the probability distribution II(Δθ) to find a given fiber angle deviation (Δθ) from the main cell fiber orientation θ0. The II(Δθ) follows an exponential decay II(Δθ) = Aexp(-αΔθ) regarding to its θ0. We defined and determined a misalignment index α of the fibers of each artery kind: coronary αCo = (1.72 ‘+ or =’ 0.36)rad POT -1; renal αRe = (1.43 + or - 0.64)rad POT -1; aorta αAo = (1.42 + or - 0.43)rad POT -1; mammary αMa = (1.12 + or - 0.50)rad POT -1; and carotid αCa = (1.01 + or - 0.39)rad POT -1. The α of coronary and carotid are statistically different (p < 0.05) among all analyzed cells. We discussed our results correlating the misalignment index data with the experimental cell mechanical properties obtained by using Optical Magnetic Twisting Cytometry with the same group of cells.
Resumo:
In this thesis we focussed on the characterization of the reaction center (RC) protein purified from the photosynthetic bacterium Rhodobacter sphaeroides. In particular, we discussed the effects of native and artificial environment on the light-induced electron transfer processes. The native environment consist of the inner antenna LH1 complex that copurifies with the RC forming the so called core complex, and the lipid phase tightly associated with it. In parallel, we analyzed the role of saccharidic glassy matrices on the interplay between electron transfer processes and internal protein dynamics. As a different artificial matrix, we incorporated the RC protein in a layer-by-layer structure with a twofold aim: to check the behaviour of the protein in such an unusual environment and to test the response of the system to herbicides. By examining the RC in its native environment, we found that the light-induced charge separated state P+QB - is markedly stabilized (by about 40 meV) in the core complex as compared to the RC-only system over a physiological pH range. We also verified that, as compared to the average composition of the membrane, the core complex copurifies with a tightly bound lipid complement of about 90 phospholipid molecules per RC, which is strongly enriched in cardiolipin. In parallel, a large ubiquinone pool was found in association with the core complex, giving rise to a quinone concentration about ten times larger than the average one in the membrane. Moreover, this quinone pool is fully functional, i.e. it is promptly available at the QB site during multiple turnover excitation of the RC. The latter two observations suggest important heterogeneities and anisotropies in the native membranes which can in principle account for the stabilization of the charge separated state in the core complex. The thermodynamic and kinetic parameters obtained in the RC-LH1 complex are very close to those measured in intact membranes, indicating that the electron transfer properties of the RC in vivo are essentially determined by its local environment. The studies performed by incorporating the RC into saccharidic matrices evidenced the relevance of solvent-protein interactions and dynamical coupling in determining the kinetics of electron transfer processes. The usual approach when studying the interplay between internal motions and protein function consists in freezing the degrees of freedom of the protein at cryogenic temperature. We proved that the “trehalose approach” offers distinct advantages with respect to this traditional methodology. We showed, in fact, that the RC conformational dynamics, coupled to specific electron transfer processes, can be modulated by varying the hydration level of the trehalose matrix at room temperature, thus allowing to disentangle solvent from temperature effects. The comparison between different saccharidic matrices has revealed that the structural and dynamical protein-matrix coupling depends strongly upon the sugar. The analyses performed in RCs embedded in polyelectrolyte multilayers (PEM) structures have shown that the electron transfer from QA - to QB, a conformationally gated process extremely sensitive to the RC environment, can be strongly modulated by the hydration level of the matrix, confirming analogous results obtained for this electron transfer reaction in sugar matrices. We found that PEM-RCs are a very stable system, particularly suitable to study the thermodynamics and kinetics of herbicide binding to the QB site. These features make PEM-RC structures quite promising in the development of herbicide biosensors. The studies discussed in the present thesis have shown that, although the effects on electron transfer induced by the native and artificial environments tested are markedly different, they can be described on the basis of a common kinetic model which takes into account the static conformational heterogeneity of the RC and the interconversion between conformational substates. Interestingly, the same distribution of rate constants (i.e. a Gamma distribution function) can describe charge recombination processes in solutions of purified RC, in RC-LH1 complexes, in wet and dry RC-PEM structures and in glassy saccharidic matrices over a wide range of hydration levels. In conclusion, the results obtained for RCs in different physico-chemical environments emphasize the relevance of the structure/dynamics solvent/protein coupling in determining the energetics and the kinetics of electron transfer processes in a membrane protein complex.
Resumo:
This work provides a forward step in the study and comprehension of the relationships between stochastic processes and a certain class of integral-partial differential equation, which can be used in order to model anomalous diffusion and transport in statistical physics. In the first part, we brought the reader through the fundamental notions of probability and stochastic processes, stochastic integration and stochastic differential equations as well. In particular, within the study of H-sssi processes, we focused on fractional Brownian motion (fBm) and its discrete-time increment process, the fractional Gaussian noise (fGn), which provide examples of non-Markovian Gaussian processes. The fGn, together with stationary FARIMA processes, is widely used in the modeling and estimation of long-memory, or long-range dependence (LRD). Time series manifesting long-range dependence, are often observed in nature especially in physics, meteorology, climatology, but also in hydrology, geophysics, economy and many others. We deepely studied LRD, giving many real data examples, providing statistical analysis and introducing parametric methods of estimation. Then, we introduced the theory of fractional integrals and derivatives, which indeed turns out to be very appropriate for studying and modeling systems with long-memory properties. After having introduced the basics concepts, we provided many examples and applications. For instance, we investigated the relaxation equation with distributed order time-fractional derivatives, which describes models characterized by a strong memory component and can be used to model relaxation in complex systems, which deviates from the classical exponential Debye pattern. Then, we focused in the study of generalizations of the standard diffusion equation, by passing through the preliminary study of the fractional forward drift equation. Such generalizations have been obtained by using fractional integrals and derivatives of distributed orders. In order to find a connection between the anomalous diffusion described by these equations and the long-range dependence, we introduced and studied the generalized grey Brownian motion (ggBm), which is actually a parametric class of H-sssi processes, which have indeed marginal probability density function evolving in time according to a partial integro-differential equation of fractional type. The ggBm is of course Non-Markovian. All around the work, we have remarked many times that, starting from a master equation of a probability density function f(x,t), it is always possible to define an equivalence class of stochastic processes with the same marginal density function f(x,t). All these processes provide suitable stochastic models for the starting equation. Studying the ggBm, we just focused on a subclass made up of processes with stationary increments. The ggBm has been defined canonically in the so called grey noise space. However, we have been able to provide a characterization notwithstanding the underline probability space. We also pointed out that that the generalized grey Brownian motion is a direct generalization of a Gaussian process and in particular it generalizes Brownain motion and fractional Brownain motion as well. Finally, we introduced and analyzed a more general class of diffusion type equations related to certain non-Markovian stochastic processes. We started from the forward drift equation, which have been made non-local in time by the introduction of a suitable chosen memory kernel K(t). The resulting non-Markovian equation has been interpreted in a natural way as the evolution equation of the marginal density function of a random time process l(t). We then consider the subordinated process Y(t)=X(l(t)) where X(t) is a Markovian diffusion. The corresponding time-evolution of the marginal density function of Y(t) is governed by a non-Markovian Fokker-Planck equation which involves the same memory kernel K(t). We developed several applications and derived the exact solutions. Moreover, we considered different stochastic models for the given equations, providing path simulations.
Resumo:
Many efforts have been devoting since last years to reduce uncertainty in hydrological modeling predictions. The principal sources of uncertainty are provided by input errors, for inaccurate rainfall prediction, and model errors, given by the approximation with which the water flow processes in the soil and river discharges are described. The aim of the present work is to develop a bayesian model in order to reduce the uncertainty in the discharge predictions for the Reno river. The ’a priori’ distribution function is given by an autoregressive model, while the likelihood function is provided by a linear equation which relates observed values of discharge in the past and hydrological TOPKAPI model predictions obtained by the rainfall predictions of the limited-area model COSMO-LAMI. The ’a posteriori’ estimations are provided throw a H∞ filter, because the statistical properties of estimation errors are not known. In this work a stationary and a dual adaptive filter are implemented and compared. Statistical analysis of estimation errors and the description of three case studies of flood events occurred during the fall seasons from 2003 to 2005 are reported. Results have also revealed that errors can be described as a markovian process only at a first approximation. For the same period, an ensemble of ’a posteriori’ estimations is obtained throw the COSMO-LEPS rainfall predictions, but the spread of this ’a posteriori’ ensemble is not enable to encompass observation variability. This fact is related to the building of the meteorological ensemble, whose spread reaches its maximum after 5 days. In the future the use of a new ensemble, COSMO–SREPS, focused on the first 3 days, could be helpful to enlarge the meteorogical and, consequently, the hydrological variability.
Resumo:
The aim of this Thesis is to investigate the possibility that the observations related to the epoch of reionization can probe not only the evolution of the IGM state, but also the cosmological background in which this process occurs. In fact, the history of the IGM ionization is indeed affected by the evolution of the sources of ionizing photons that, under the assumption of a structure formation paradigm determined by the hierarchic growth of the matter uctuations, results strongly dependent on the characteristics of the background universe. For the purpose of our investigation, we have analysed the reionization history in innovative cosmological frameworks, still in agreement with the recent observational tests related to the SNIa and the CMB probes, comparing our results with the reionization scenario predicted by the commonly used LCDM cosmology. In particular, in this Thesis we have considered two different alternative universes. The first one is a at universe dominated at late epochs by a dynamic dark energy component, characterized by an equation of state evolving in time. The second cosmological framework we have assumed is a LCDM characterized by a primordial overdensity field having a non-Gaussian probability distribution. The reionization scenario have been investigated, in this Thesis, through semi-analytic approaches based on the hierarichic growth of the matter uctuations and on suitable assumptions concerning the ionization and the recombination of the IGM. We make predictions for the evolution and the distribution of the HII regions, and for the global features of reionization, that can be constrained by future observations. Finally, we brie y discuss the possible future prospects of this Thesis work.