954 resultados para Precocious ovarian recrudescence
Resumo:
Background: Poor ovarian response phenomenon has been observed in some of the in vitro fertilization-embryo transfer patients. Some investigations found that follicle stimulating hormone receptor (FSHR) gene plays a role in the process, but no direct evidence shows the correlation between genotypes of FSHR and ovarian response. Objective: Exploring the molecular mechanism behind the mutation of FSHR promoter association with ovarian granulosa cells and poor ovarian response. Materials and Methods: This cross sectional study was performed using 158 women undergoing the controlled short program ovarian stimulation for IVF treatment. The 263 bp DNA fragments before the follicle stimulating hormone (FSH) receptor 5' initiation site were sequenced in the patients under IVF cycle, 70 of which had poor ovarian response and 88 showed normal ovarian responses. Results: With a mutation rate of 40%, 63 in 158 cases showed a 29th site G→A point mutation; among the mutated cases, the mutation rate of the poor ovarian responders was significantly higher than the normal group (60% versus 23.9%; χ2=21.450, p<0.001). Besides, the variability was also obvious in antral follicle count, and ovum pick-ups. The estradiol peak values and the number of mature eggs between the two groups had significant difference. However, there was no obvious variability (t=0.457, p=0.324) in the basic FSH values between the two groups (normal group, 7.2±2.3 U/L; mutation group, 7.1±2.0 U/L). Conclusion: The activity of FSHR promoter is significantly affected by the 29th site G→A mutation that will weaken promoter activity and result in poor response to FSH.
Resumo:
Background: Polycystic ovary syndrome (PCOS) is one of the most common endocrine women’s disorders in reproductive age. Hyperandrogenism has a critical role in the etiology of PCOS and it can cause fault in Steroidogenesis process. During steroidogenesis, steroidogenic acute regulatory protein (StAR) seems to increase the delivery of cholesterol through mitochondrial membrane. Therefore, polymorphisms of StAR might effect on this protein and play a role in the etiology of PCOS. Objective: The aim of this study was to investigate the association between StAR SNPs with PCOS. Thus, seven polymorphisms in this gene: rs104894086, rs104894089, rs104894090, rs137852689, rs10489487, rs104894085 were detected. Materials and Methods: In this case control study, 45 PCOS women, 40 male factor/unexplained infertile women, and 40 fertile women as two control groups were participated from 2008-2012. Polymorphisms were detected using restriction fragment length polymorphism (PCR-RFLP) method. Results: Heterozygote genotyping for rs137852689 SNP (amino acid 218 C > T) was only seen in seven PCOS patients, one in normal ovulatory women, and five in male factor/unexplained infertile women (15.5%, 2.5%, 12.5%, respectively) (p= 0.12). While, it has shown no association between other SNPS with PCOs. Conclusion: The RFLP results for seven chosen SNPs, which located in exon 5 and 7 showed normal status in three groups, it means no heterozygous or homozygous forms of selected SNPs were observed. So, it seems evaluation of the active amino acid sites should be investigated and also the study population should be increased.
Resumo:
Background: Asparagus is a plant with high nutritional, pharmaceutical, and industrial values. Objective: The present study aimed to evaluate the effect of aqueous extract of asparagus roots on the hypothalamic-pituitary-gonadal axis hormones and oogenesis in female rats. Materials and Methods: In this experimental study, 40 adult female Wistar rats were divided into five groups, which consist 8 rats. Groups included control, sham and three experimental groups receiving different doses (100, 200, 400 mg/kg/bw) of aqueous extract of asparagus roots. All dosages were administered orally for 28 days. Blood samples were taken from rats to evaluate serum levels of Gonadotropin releasing hormone (GnRH), follicular stimulating hormone (FSH), Luteinal hormone (LH), estrogen, and progesterone hormones. The ovaries were removed, weighted, sectioned, and studied by light microscope. Results: Dose-dependent aqueous extract of asparagus roots significantly increased serum levels of GnRH, FSH, LH, estrogen, and progestin hormones compared to control and sham groups. Increase in number of ovarian follicles and corpus luteum in groups treated with asparagus root extract was also observed (p<0.05). Conclusion: Asparagus roots extract stimulates secretion of hypothalamic- pituitary- gonadal axis hormones. This also positively affects oogenesis in female rats.
Resumo:
The reproductive efficiency is directly related to the nutritional management. The diet lipid inclusion, especially with enhanced sources of omega 6 and omega 3 fatty acids, is positively associated to the ovarian follicular development of ruminants. The objective of this study was to evaluate the effects of toasted soybean grain addition on restricted or ad libitum feeding on ovarian follicular development of Santa Inês ewe lambs In conclusion, the diameter of the largest follicle and the number of >5 mm follicles were not influenced by the restricted intake diet nor the lipid inclusion; however, they increased in a direct relationship with the age of the animals.
Resumo:
Cutaneous melanoma (CM) represents the third most common cancer in Italian women under 49 years old. In the last decades, many molecular studies confirmed that sex hormones have a part in melanogenesis and melanoma genesis. However, many controversies are present regarding the role of exogenous oestrogens intake and endogenous hormonal status in female melanoma. Our study's primary objective is to investigate the features of melanoma in women of fertile age and women in postmenopausal age. The secondary aim is to evaluate the expression of ERα and ERβ by immunohistochemical analysis in women who underwent ovarian stimulation for medically assisted procreation and in women in cancer therapy for breast cancer (BC) comparing to two control groups. The tertiary objective is to correlate ERα and ERβ with the Breslow thickness and other relevant histopathological, clinical and dermoscopic characteristics Results A total of 998 women were included in the study. Women in fertile age are significantly more prone to have CM on the trunk. Conversely, postmenopausal females are more likely to develop CM on acral locations. Breslow thickness and ulceration were statistically significant among postmenopausal women (P-value <0,001). In the group for women with a history of breast cancer (BC), we observed a significantly higher CM percentage with “non-brisk” TILs. Upon immunohistochemical analysis, most cases with inhibitor aromatase therapy displayed a strong cytoplasmatic ERα positivity. Upon the Pearson correlation analysis, no association was shown between nuclear ERβ and Breslow thickness. The meaning of cytoplasmatic ERα in melanoma is still debated. It could suggest a potentially significant role of oestrogen non-genomic pathway in these patients, or it can be a mechanism of ERs modulation in response to aromatase inhibitor therapy. Our work tried to enlighten some of the existing shadows on the role of ERs and hormonal factors in CM.
Resumo:
Cancer research and development of targeting agents in this field is based on robust studies using preclinical models. The failure rate of standardized treatment approaches for several solid tumors has led to the urgent need to fine-tune more sophisticated and faithful preclinical models able to recapitulate the features of in vivo human tumors, with the final aim to shed light on new potential therapeutic targets. Epithelial Ovarian Cancer (EOC) serous histotype (HGSOC) is one of the most lethal diseases in women due to its high aggressiveness (75% of patients diagnosed at FIGO III-IV state) and poor prognosis (less of 50% in 5 years), whose therapy often fails as chemoresistance sets in. This thesis aimed at using the novel perfusion-based bioreactor U-CUP that provides direct perfusion throughout the tumor tissue seeking to obtain an EOC 3D ex vivo model able to recapitulate the features of the original tumor including the tumor microenvironment and maintaining its cellular heterogeneity. Moreover, we optimized this approach so that it can be successfully applied to slow-frozen tumoral tissues, further extending the usefulness of this tool. We also investigated the effectiveness of Plasma Activated Ringer’s Lactate solution (PA-RL) against Epithelial Ovarian Cancer (EOC) serous histotype in both 2D and 3D cultures using ex-vivo specimens from HGSOC patients. We propose PA-RL as a novel therapy with local intraperitoneal administration, which could act on primary or metastatic ovarian tumors inducing a specific cancer cell death with reduced damage on the surrounding healthy tissues.
Resumo:
Plasma medicine is a branch of plasma-promising biomedical applications that uses cold atmospheric plasma (CAP) as a therapeutic agent in treating a wide range of medical conditions including cancer. Epithelial ovarian cancer (EOC) is a highly malignant and aggressive form of ovarian cancer, and most patients are diagnosed at advanced stages which significantly reduces the chances of successful treatment. Treatment resistance is also common, highlighting the need for novel therapies to be developed to treat EOC. Research in Plasma Medicine has revealed that plasma has unique properties suitable for biomedical applications and medical therapies, including responses to hormetic stimuli. However, the exact mechanisms by which CAP works at the molecular level are not yet fully understood. In this regard, the main goal of this thesis is to identify a possible adjuvant therapy for cancer, which could exert a cytotoxic effect, without damaging the surrounding healthy cells. An examination of different plasma-activated liquids (PALs) revealed their potential as effective tools for significantly inhibiting the growth of EOC. The dose-response profile between PALs and their targeted cytotoxic effects on EOC cells without affecting healthy cells was established. Additionally, it was validated that PALs exert distinct effects on different subtypes of EOC, possibly linked to the cells' metabolism. This suggests the potential for developing new, personalized anticancer strategies. Furthermore, it was observed that CAP treatment can alter the chemistry of a biomolecule present in PAL, impacting its cytotoxic activity. The effectiveness of the treatment was also preliminarily evaluated in 3D cultures, opening the door for further investigation of a possible correlation between the tumor microenvironment and PALs' resistance. These findings shed light on the intricate interplay between CAP and the liquid substrate and cell behaviour, providing valuable insights for the development of a novel and promising CAP-based cancer treatment for clinical application.
Resumo:
BRCA1 and BRCA2 are the most frequently mutated genes in ovarian cancer (OC), crucial both for the identification of cancer predisposition and therapeutic choices. However, germline variants in other genes could be involved in OC susceptibility. We characterized OC patients to detect mutations in genes other than BRCA1/2 that could be associated with a high risk to develop OC, and that could permit patients to enter the most appropriate treatment and surveillance program. Next-Generation Sequencing analysis with a 94-gene panel was performed on germline DNA of 219 OC patients. We identified 34 pathogenic/likely-pathogenic variants in BRCA1/2 and 38 in other 21 genes. Patients with pathogenic/likely-pathogenic variants in non-BRCA1/2 genes developed mainly OC alone compared to the other groups that developed also breast cancer or other tumors (p=0.001). Clinical correlation analysis showed that low-risk patients were significantly associated with platinum sensitivity (p<0.001). Regarding PARP inhibitors (PARPi) response, patients with pathogenic mutations in non-BRCA1/2 genes had significantly worse PFS and OS. Moreover, a statistically significant worse PFS was found for every increase of one thousand platelets before PARPi treatment. To conclude, knowledge about molecular alterations in genes beyond BRCA1/2 in OC could allow for more personalized diagnostic, predictive, prognostic, and therapeutic strategies for OC patients.
Resumo:
The arginine methyltransferase CARM1 (PRMT4) is amplified and overexpressed in ~20% of high-grade serous ovarian cancer (HGSOC) and correlates with a poor survival. Therapeutic approaches based on CARM1 expression remain to be an unmet need. Here we show that fatty acid metabolism represents a metabolic vulnerability for HGSOC in a CARM1 expression status dependent manner. CARM1 promotes the de novo synthesis of fatty acids and monounsaturated fatty acids (MUFAs). The disruption of MUFAs synthesis by inhibition of SCD1 results in excessive accumulation of cytotoxic saturated fatty acids and it is synthetic lethal with CARM1 expression. Collectively, our data show that the pharmacological inhibition of MUFAs synthesis via SCD1 inhibition represents a therapeutic strategy for CARM1-high HGSOC. Another arginine methyltransferase, PRMT5, has been identified by our CRISPR screening analysis as a promising candidate for invasive ARID1A-deficient endometrial cancer. Endometrial Cancer frequently harbor somatic inactivating mutation of ARID1A that can promote an invasive phenotype. Our in vitro approach validated the CRISPR screening showing that both PRTM5 knock down and its pharmaceutical inhibition specifically hamper the invasion of ARID1A inactivated cells. Mechanistically, PRMT5 directly regulates the epithelia to mesenchymal transition pathway genes interacting with the SWI/SNF complexes. Moreover, in vivo experiments showed that PRMT5 inhibition contrasted the myometrium invasion highlighting PRMT5 inhibition as promising therapeutic strategy for ARID1A- inactivated aggressive endometrial cancer.
Resumo:
High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.
Resumo:
Twelve novel 8-hydroxyquinoline derivatives were synthesized with good yields by performing copper-catalyzed Huisgen 1,3-dipolar cycloaddition (click reaction) between an 8-O-alkylated-quinoline containing a terminal alkyne and various aromatic or protected sugar azides. These compounds were evaluated in vitro for their antiproliferative activity on various cancer cell types. Protected sugar derivative 16 was the most active compound in the series, exhibiting potent antiproliferative activity and high selectivity toward ovarian cancer cells (OVCAR-03, GI50 < 0.25 μg mL(-1)); this derivative was more active than the reference drug doxorubicin (OVCAR-03, GI50 = 0.43 μg mL(-1)). In structure-activity relationship (SAR) studies, the physico-chemical parameters of the compounds were evaluated and docking calculations were performed for the α-glucosidase active site to predict the possible mechanism of action of this series of compounds.
Resumo:
The essential oil from the leaves of Ocimum kilimandscharicum (EOOK), collected in Dourados-MS, was investigated for anticancer, anti-inflammatory and antioxidant activity and chemical composition. The essential oil was extracted by hydrodistillation, and the chemical composition was performed by gas chromatography-mass spectrometry. The essential oil was evaluated for free radical-scavenging activity using the DPPH assay and was tested in an anticancer assay against ten human cancer cell lines. The response parameter (GI50) was calculated for the cell lines tested. The anti-inflammatory activity was evaluated using carrageenan-induced pleurisy in mice. The chemical composition showed 45 components with a predominance of monoterpenes, such as camphor (51.81%), 1,8 cineole (20.13%) and limonene (11.23%). The EOOK exhibited potent free radical-scavenging activity by the DPPH assay with a GI50 of 8.31 μg/ml. The major constituents, pure camphor (IC50=12.56 μg/ml) and mixture of the limonene: 1, 8 cineole (IC50=23.25 μg/ml) displayed a potent activity. The oral administration of EOOK (at 30 and 100 mg kg(-1)), as well as the pure camphor or a mixture of 1,8 cineole with limonene, significantly inhibited the carrageenan (Cg) induced pleurisy, reducing the migration of total leukocytes in mice by 82 ± 4% (30 mg kg(-1) of EOOK), 95 ± 4% (100 mg kg(-1) of EOOK), 83 ± 9% (camphor) and 80 ± 5% (mixture of 1,8 cineole:limonene 1:1). In vitro cytotoxicity screening against a human ovarian cancer cell line displayed high selectivity and potent anticancer activity with GI50=31.90 mg ml(-1). This work describes the anti-inflammatory, anticancer and antioxidant effects of EOOK for the first time. The essential oil exhibited marked anti-inflammatory, antioxidant and anticancer effects, an effect that can be attributed the presence of majorital compounds, and the response profiles from chemical composition differed from other oils collected in different locales.
Resumo:
A series of novel 1-(substituted phenyl)-3-(2-oxo-1,3,4-oxadiazol-5-yl) β-carbolines (4a-e) and the corresponding Mannich bases 5-9(a-c) were synthesized and evaluated for their in vitro antitumor activity against seven human cancer cell lines. Compounds of 4a-e series showed a broad spectrum of antitumor activity, with GI50 values lower than 15μM for five cell lines. The derivative 4b, having the N,N-dimethylaminophenyl group at C-1, displayed the highest activity with GI50 in the range of 0.67-3.20μM. A high selectivity and potent activity were observed for some Mannich bases, particularly towards resistant ovarian (NCI-ADR/RES) cell lines (5a, 5b, 6a, 6c and 9b), and ovarian (OVCAR-03) cell lines (5b, 6a, 6c, 9a, 9b and 9c). In addition, the interaction of compound 4b with DNA was investigated by using UV and fluorescence spectroscopic analysis. These studies indicated that 4b interact with ctDNA by intercalation binding.
Resumo:
In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer.
Resumo:
To evaluate the sparing of fertility and ovaries in women submitted to surgical treatment for benign adnexal tumors. Between February 2010 and January 2014, 206 patients were included in this observational study as they were submitted to surgical treatment for benign ovarian tumors at CAISM, a tertiary hospital. Fertility sparing surgery was defined as tumorectomy or unilateral salpingoophorectomy without hysterectomy in premenopausal women. Preservation of the ovary occurred when at least one ovary or part of it was mantained. Of the 206 women with benign tumors, 120 (58%) were premenopausal and 86 (42%) were postmenopausal. There were 36 (30%) ovarian germ cell tumors, 31 (26%) epithelial neoplasms and 11 (9%) sex-cord stromal tumors among premenopausal women. In the group of postmenopausal women, 35 (41%) epithelial neoplasms, 27 (31%) sex-cord stromal tumors and 8 (9%) ovarian germ cell tumors were identified. Among 36 women with non-neoplastic ovarian tumors, 21 (58%) had endometriomas and 8 (22%) functional cysts. Among 22 women with extra-ovarian tumors, uterine leiomyomatosis was the most frequent finding (50%). In the group of women who were ≤ 35 years old, 26 (57%) were treated by tumorectomy and 18 (39%) were submitted to unilateral salpingoophorectomy with sparing of the uterus and the contralateral ovary. Women who were ≤ 35 years old were more frequently operated by laparoscopy which was associated with a higher number of fertility sparing procedures when compared to laparotomy (p<0.01). Twenty-six (28%) women submitted to hysterectomy with bilateral salpingoophorectomy were premenopausal. Although there is a trend to perform only tumorectomy in women who are ≤ 35 years old, a significant number of young women is still treated by salpingoophorectomy. Among 36- to 45-year-old women, only 70% had their fertility spared, while 20% had both ovaries removed. However, whenever possible, we must try to preserve the ovaries, mainly in premenopausal women.