968 resultados para Poisson-Boltzmann
Resumo:
The generalizations of the Onsager model for the radial boundary layer and the Carrier-Maslen model for the end-cap axial boundary layer in a high-speed rotating cylinder are formulated for studying the secondary gas flow due to wall heating and due to insertion of mass, momentum and energy into the cylinder. The generalizations have wider applicability than the original Onsager and Carrier-Maslen models, because they are not restricted to the limit A >> 1, though they are restricted to the limit R e >> 1 and a high-aspect-ratio cylinder whose length/diameter ratio is large. Here, the stratification parameter A = root m Omega(2)R(2)/2k(B)T). This parameter A is the ratio of the peripheral speed, Omega R, to the most probable molecular speed, root 2k(B)T/m, the Reynolds number Re = rho w Omega R(2)/mu, where m is the molecular mass, Omega and R are the rotational speed and radius of the cylinder, k(B) is the Boltzmann constant, T is the gas temperature, rho(w) is the gas density at wall, and mu is the gas viscosity. In the case of wall forcing, analytical solutions are obtained for the sixth-order generalized Onsager equations for the master potential, and for the fourth-order generalized Carrier-Maslen equation for the velocity potential. For the case of mass/momentum/energy insertion into the flow, the separation-of-variables procedure is used, and the appropriate homogeneous boundary conditions are specified so that the linear operators in the axial and radial directions are self-adjoint. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order and second-order in the radial and axial directions for the Onsager equation, and fourth-order and second-order in the axial and radial directions for the Carrier-Maslen equation) are determined. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used `diffuse reflection' boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a `temperature slip' (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity. The predictions of the generalized models are also significantly better than those of the original Onsager and Carrier-Maslen models, which are restricted to thin boundary layers in the limit of high stratification parameter.
Resumo:
The numerical solutions of Boltzmann transpott equation for the energy distribution of electrons moving in crossed fields in nitrogen have been obtained for 100 ÿ E/p ÿ 1000 V M-1 Torr-1 and for 0ÿ B/p ÿ 0.02 Tesla Torr-1 using the concept of energy dependent effective field intensity. From the derived distribution functions the electron mean energy, the tranaverse and perpendicular drift velocities and the averaged effective field intensity (Eavef) which signifies the average field intensity experienced by electron swarms in E àB field have been derived. The maximum difference between the electron mean energy for a given E ÃÂB field and that corresponding to Eavef/p (p is the gas pressure) is found to be within ñ3.5%.
Resumo:
We study the time-dependent transitions of a quantum-forced harmonic oscillator in noncommutative R(1,1) perturbatively to linear order in the noncommutativity theta. We show that the Poisson distribution gets modified, and that the vacuum state evolves into a `squeezed' state rather than a coherent state. The time evolutions of uncertainties in position and momentum in vacuum are also studied and imply interesting consequences for modeling nonlinear phenomena in quantum optics.
Resumo:
By using bender and extender elements test, the velocities of the primary and shear waves, V(P) and V(s) respectively, were measured for a sandy material by gradually varying the degree of saturation, S(r), between the dry and fully saturated states. The effect on the results of varying the relative density and effective confining pressure was also studied. The measurements clearly reveal that for a certain optimum S(r), which is around 0.7-0.9% for the chosen sand, the value of the shear modulus G reaches a maximum value, whereas the corresponding Poisson's ratio nu attains a minimum value. The values of the shear modulus corresponding to S(r) approximate to 0% and S(r) = 100% tend towards the same value. For values of Skempton's B parameter greater than 0.99, the values of V(P) and nu rise very sharply to those of water. The predictions from Biot's theory with respect to the variation of V(P) with S(r) match well with the measured experimental data.
Resumo:
We briefly review the growth and structural properties of View the MathML source bulk single crystals and View the MathML source epitaxial films grown on semi-insulating GaAs substrates. Temperature-dependent transport measurements on these samples are then correlated with the information obtained from structural (XRD, TEM, SEM) and optical (FTIR absorption) investigations. The temperature dependence of mobility and the Hall coefficient are theoretically modelled by exactly solving the linearized Boltzmann transport equation by inversion of the collision matrix and the relative role of various scattering mechanisms in limiting the low temperature and View the MathML source mobility is estimated. Finally, the first observation of Shubnikov oscillations in InAsSb is discussed.
Resumo:
Kinetic schemes as pursued in CFD Centre are obtained by taking suitable moments of upwind schemes for Boltzmann equation without collision term. The primary ones among these are KFVS, LSKUM, KFMG and these have been applied successfully to a variety of flow problems using various meshes. These schemes have been found to be very robust.
Resumo:
The design of machine foundations are done on the basis of two principal criteria viz., vibration amplitude should be within the permissible limits and natural frequency of machine-foundation-soil system should be away from the operating frequency (i.e. avoidance of resonance condition). In this paper the nondimensional amplitude factor M-m or M-r m and the nondimensional frequency factor a(o m) at resonance are related using elastic half space theory and is used as a new approach for a simplified design procedure for the design of machine foundations for all the modes of vibration fiz. vertical, horizontal, rocking and torsional for rigid base pressure distribution and weighted average displacement condition. The analysis show that one need not know the value of Poisson's ratio for rotating mass system for all the modes of vibration.
Resumo:
Given two independent Poisson point processes Phi((1)), Phi((2)) in R-d, the AB Poisson Boolean model is the graph with the points of Phi((1)) as vertices and with edges between any pair of points for which the intersection of balls of radius 2r centered at these points contains at least one point of Phi((2)). This is a generalization of the AB percolation model on discrete lattices. We show the existence of percolation for all d >= 2 and derive bounds fora critical intensity. We also provide a characterization for this critical intensity when d = 2. To study the connectivity problem, we consider independent Poisson point processes of intensities n and tau n in the unit cube. The AB random geometric graph is defined as above but with balls of radius r. We derive a weak law result for the largest nearest-neighbor distance and almost-sure asymptotic bounds for the connectivity threshold.
Resumo:
Charge linearization techniques have been used over the years in advanced compact models for bulk and double-gate MOSFETs in order to approximate the position along the channel as a quadratic function of the surface potential (or inversion charge densities) so that the terminal charges can be expressed as a compact closed-form function of source and drain end surface potentials (or inversion charge densities). In this paper, in case of the independent double-gate MOSFETs, we show that the same technique could be used to model the terminal charges quite accurately only when the 1-D Poisson solution along the channel is fully hyperbolic in nature or the effective gate voltages are same. However, for other bias conditions, it leads to significant error in terminal charge computation. We further demonstrate that the amount of nonlinearity that prevails between the surface potentials along the channel actually dictates if the conventional charge linearization technique could be applied for a particular bias condition or not. Taking into account this nonlinearity, we propose a compact charge model, which is based on a novel piecewise linearization technique and shows excellent agreement with numerical and Technology Computer-Aided Design (TCAD) simulations for all bias conditions and also preserves the source/drain symmetry which is essential for Radio Frequency (RF) circuit design. The model is implemented in a professional circuit simulator through Verilog-A, and simulation examples for different circuits verify good model convergence.
Resumo:
Since it is difficult to find the analytical solution of the governing Poisson equation for double gate MOSFETs with the body doping term included, the majority of the compact models are developed for undoped-body devices for which the analytical solution is available. Proposed is a simple technique to included a body doping term in such surface potential based common double gate MOSFET models also by taking into account any differences between the gate oxide thickness. The proposed technique is validated against TCAD simulation and found to be accurate as long as the channel is fully depleted.
Resumo:
We report on the threshold voltage modeling of ultra-thin (1 nm-5 nm) silicon body double-gate (DG) MOSFETs using self-consistent Poisson-Schrodinger solver (SCHRED). We define the threshold voltage (V th) of symmetric DG MOSFETs as the gate voltage at which the center potential (Φ c) saturates to Φ c (s a t), and analyze the effects of oxide thickness (t ox) and substrate doping (N A) variations on V th. The validity of this definition is demonstrated by comparing the results with the charge transition (from weak to strong inversion) based model using SCHRED simulations. In addition, it is also shown that the proposed V t h definition, electrically corresponds to a condition where the inversion layer capacitance (C i n v) is equal to the oxide capacitance (C o x) across a wide-range of substrate doping densities. A capacitance based analytical model based on the criteria C i n v C o x is proposed to compute Φ c (s a t), while accounting for band-gap widening. This is validated through comparisons with the Poisson-Schrodinger solution. Further, we show that at the threshold voltage condition, the electron distribution (n(x)) along the depth (x) of the silicon film makes a transition from a strong single peak at the center of the silicon film to the onset of a symmetric double-peak away from the center of the silicon film. © 2012 American Institute of Physics.
Resumo:
We propose a distribution-free approach to the study of random geometric graphs. The distribution of vertices follows a Poisson point process with intensity function n f(center dot), where n is an element of N, and f is a probability density function on R-d. A vertex located at x connects via directed edges to other vertices that are within a cut-off distance r(n)(x). We prove strong law results for (i) the critical cut-off function so that almost surely, the graph does not contain any node with out-degree zero for sufficiently large n and (ii) the maximum and minimum vertex degrees. We also provide a characterization of the cut-off function for which the number of nodes with out-degree zero converges in distribution to a Poisson random variable. We illustrate this result for a class of densities with compact support that have at most polynomial rates of decay to zero. Finally, we state a sufficient condition for an enhanced version of the above graph to be almost surely connected eventually.
Resumo:
We study coverage in sensor networks having two types of nodes, namely, sensor nodes and backbone nodes. Each sensor is capable of transmitting information over relatively small distances. The backbone nodes collect information from the sensors. This information is processed and communicated over an ad hoc network formed by the backbone nodes, which are capable of transmitting over much larger distances. We consider two models of deployment for the sensor and backbone nodes. One is a PoissonPoisson cluster model and the other a dependently thinned Poisson point process. We deduce limit laws for functionals of vacancy in both models using properties of association for random measures.
Resumo:
String theory and gauge/gravity duality suggest the lower bound of shear viscosity (eta) to entropy density (s) for any matter to be mu h/4 pi k(B), when h and k(B) are reduced Planck and Boltzmann constants respectively and mu <= 1. Motivated by this, we explore eta/s in black hole accretion flows, in order to understand if such exotic flows could be a natural site for the lowest eta/s. Accretion flow plays an important role in black hole physics in identifying the existence of the underlying black hole. This is a rotating shear flow with insignificant molecular viscosity, which could however have a significant turbulent viscosity, generating transport, heat and hence entropy in the flow. However, in presence of strong magnetic field, magnetic stresses can help in transporting matter independent of viscosity, via celebrated Blandford-Payne mechanism. In such cases, energy and then entropy produces via Ohmic dissipation. In,addition, certain optically thin, hot, accretion flows, of temperature greater than or similar to 10(9) K, may be favourable for nuclear burning which could generate/absorb huge energy, much higher than that in a star. We find that eta/s in accretion flows appears to be close to the lower bound suggested by theory, if they are embedded by strong magnetic field or producing nuclear energy, when the source of energy is not viscous effects. A lower bound on eta/s also leads to an upper bound on the Reynolds number of the flow.
Resumo:
The scattering of carriers by charged dislocations in semiconductors is studied within the framework of the linearized Boltzmann transport theory with an emphasis on examining consequences of the extreme anisotropy of the cylindrically symmetric scattering potential. A new closed-form approximate expression for the carrier mobility valid for all temperatures is proposed. The ratios of quantum and transport scattering times are evaluated after averaging over the anisotropy in the relaxation time. The value of the Hall scattering factor computed for charged dislocation scattering indicates that there may be a factor of two error in the experimental mobility estimates using the Hall data. An expression for the resistivity tensor when the dislocations are tilted with respect to the plane of transport is derived. Finally, an expression for the isotropic relaxation time is derived when the dislocations are located within the sample with a uniform angular distribution.