495 resultados para PROTEROZOIC MICROFOSSILS


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments accumulate on the sea floor far from land with rates of a few millimetres to a few centimetres per thousand years. Sediments have been accumulating under broadly similar conditions, subject to similar controls, for the past 10 8 years and more. In principle we should be able to study the distribution of climatic variance with frequencies over the range 10**-3 to 10**-7 cycles per year with comparative ease. In fact, nearly all our data are heavily weighted towards the youngest part of the geological record. We study frequencies higher than 10**-4 cycles per year in the special case of a Pleistocene interglacial (the present one), and frequencies in the range 10**-4 to 10**-5 cycles per year in the special case of an ice-age. Although these may be of more direct interest to mankind than earlier periods, it may well be that we will understand the causes of climatic variability better if we can examine their operation over a longer time scale and under different boundary conditions. Rather than review the available data, I have collected some new data to show the feasibility of gathering a data base for examining climatic variability without this usual bias toward the recent. The most widely applicable tool for extracting climatic information from deep-sea sediments is oxygen isotope analysis of calcium carbonate microfossils. It is generally possible to select from the sediment both specimens of benthonic Foraminifera (that is, those that lived in ocean deep water at the sediment-water interface) and specimens of planktonic Foraminifera (that is, those that lived and formed their shells near the ocean surface, and fell to the sediment after death). Thus one is able to monitor conditions at the surface and at depth at simultaneous moments in the geological past. The necessity to analyse calcareous microfossils restricts investigation to calcareous sediments, but even with this restriction in sediment type there are many factors governing the rate of sediment accumulation. On a global scale, sediment accumulates so as to balance the input to the oceans from continental erosion. Even when averaged globally, long-term accumulation rates have varied by almost a factor of ten (Davies et al., 1977, doi:10.1126/science.197.4298.53). At the regional scale, surface productivity and deep-water physical and chemical conditions also affect the sediment accumulation rate. Since all these are susceptible to variation and may well vary in response to climatic change as well as other factors, it is extremely hazardous to attempt to express any climatic variable as a function of time on the basis of measurements originally made as a function of depth in sediment. Although time has been used as a basis for plotting Figs. i-8, these should be regarded as freehand sketches of climatic history rather than as time-series plots.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lesser Himalayan fold-thrust belt on the south flank of the Jajarkot klippe in west central Nepal was mapped in detail between the Main Central thrust in the north and the Main Boundary thrust in the south. South of the Jajarkot klippe, the fold-thrust belt involves sandstone, shale and carbonate rocks that are unmetamorphosed in the foreland and increase in metamorphic grade with higher structural position to sub-greenschist facies towards the hinterland. The exposed stratigraphy is correlative with the Proterozoic Ranimata, Sangram, Galyang, Syangia Formations and Lakharpata Group of Western Nepal and overlain by the Paleozoic Tansen and Kali Gandaki Groups. Based on field mapping and cross-section construction, three distinct thrust sheets were identified separated by top-to-the-south thrust faults. From the foreland (south) to the hinterland (north), the first thrust sheet in the immediate hanging wall of the Main Boundary thrust defines an open syncline. The second thrust sheet contains a very broad synformal duplex, which is structurally stacked against the third thrust sheet containing a homoclinal panel of the oldest exposed Proterozoic stratigraphy. Outcrop scale folds throughout the study area are predominantly south vergent, open, and asymmetric reflecting the larger regional scale folding style, which corroborate the top-to-the-south deformation style seen in the faults of the region. Field techniques were complemented with microstructural and quartz crystallographic c-axis preferred orientation analyses using a petrographic microscope and a fabric analyzer, respectively. Microstructural analysis identified abundant strain-induced recrystallization textures and occasional occurrences of top-to-the-south shear-sense indicators primarily in the hinterland rocks in the immediate footwall of the Main Central Thrust. Top-to-the-south shearing is also supported by quartz crystallographic c-axis preferred orientations. Quartz recrystallization textures indicate an increase in deformation temperature towards the Main Central thrust. A line balance estimate indicates that approximately 15 km of crustal shortening was accommodated by folding and faulting in the fold-thrust belt south of the Jajarkot klippe. Additionally, estimations of shortening velocity suggest that the shortening velocity operating in this section of the fold-thrust belt between 23 to 14 Ma was slower than what is currently observed as a result of the ongoing deformation of the Sub-Himalayan fold-thrust belt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focuses on tectonic geomorphology and the response of the Ken River catchment to postulated tectonic forcing along a NE-striking monocline fold in the Panna region, Madhya Pradesh, India. Peninsular India is underlain by three northeast-trending paleotopographic ridges of Precambrian Indian basement, bounded by crustal-scale faults. Of particular interest is the Pokhara lineament, a crustal scale fault that defines the eastern edge of the Faizabad ridge, a paleotopographic high cored by the Archean Bundelkhand craton. The Pokhara lineament coincides with the monocline structure developed in the Proterozoic Vindhyan Supergroup rocks along the Bundelkhand cratonic margin. A peculiar, deeply incised meander-like feature, preserved along the Ken River where it flows through the monocline, may be intimately related to the tectonic regime of this system. This thesis examines 41 longitudinal stream profiles across the length of the monocline structure to identify any tectonic signals generated from recent surface uplift above the Pokhara lineament. It also investigates the evolution of the Ken River catchment in response to the generation of the monocline fold. Digital Elevation Models (DEM) from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to delineate a series of tributary watersheds and extract individual stream profiles which were imported into MATLAB for analysis. Regression limits were chosen to define distinct channel segments, and knickpoints were defined at breaks between channel segments where there was a discrete change in the steepness of the channel profile. The longitudinal channel profiles exhibit the characteristics of a fluvial system in transient state. There is a significant downstream increase in normalized steepness index in the channel profiles, as well as a general increase in concavity downstream, with some channels exhibiting convex, over-steepened segments. Normalized steepness indices and uppermost knickpoint elevations are on average much higher in streams along the southwest segment of the monocline compared to streams along the northeast segment. Most channel profiles have two to three knickpoints, predominantly exhibiting slope-break morphology. These data have important implications for recent surface uplift above the Pokhara lineament. Furthermore, geomorphic features preserved along the Ken River suggest that it is an antecedent river. The incised meander-like feature appears to be the abandoned river valley of a former Ken River course that was captured during the evolution of the landscape by what is the present day Ken River.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Paleo- to Meso-Proterozoic Jabiluka unconformity related uranium mine is located within the Alligator River Uranium Field, found in the Northern Territories, Australia. The uranium ore is hosted in the late middle Paleoproterozoic Cahill Formation, which is unconformably overlain by a group of unmetamorphosed conglomerates known as the Kombolgie subgroup. The Kombolgie subgroup provided the source for oxidized basinal brines, carrying U as the mobile form U(VI), which interacted with reducing lithologies in the Cahill formation, thus reducing U(VI) to the solid U(IV), and leading to the precipitation of uraninite (UO2). In order to characterize fluid interaction with the ore body and compare that to areas without mineralization, several isotopic tracers were studied on a series of clay samples from drill core at Jabiluka as well as in barren areas throughout the ARUF. Among the potential tracers, three were selected: U (redox sensitive and recent fluid mobilization), Fe (redox sensitive), and Li (fractionated by hydrothermal fluids and adsorption reactions). δ238U values were found to be closely linked to the mineralogy, with samples with higher K/Al ratios (indicating high illite and low chlorite concentrations) having higher δ238U values. This demonstrates that 235U preferentially absorbs onto the surface of chlorite during hydrothermal circulation. In addition, δ234U values lie far from secular equilibrium (δ234U of 30‰), indicating there was addition or removal of 234U from the surface of the samples from recent (<2.5Ma) interactions of mobile fluids. δ57Fe values were found to be related to lithology and spatially to known uranium deposits. Decreasing δ57Fe values were found with increasing depth to the unconformity in a drill hole directly above the ore zone, but not in drill holes in the barren area. Similarly to δ238U, δ7Li is found to correlate with mineralogy, with higher δ7Li values associated with samples with more chlorite. In addition, higher δ7Li values are found at greater depth throughout the basin, indicating that the direction of the mineralizing fluid circulation was upwards from the Cahill formation to the Kombolgie subgroup.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fossil associations from the middle and upper Eocene (Bartonian and Priabonian) sedimentary succession of the Pamplona Basin are described. This succession was accumulated in the western part of the South Pyrenean peripheral foreland basin and extends from deep-marine turbiditic (Ezkaba Sandstone Formation) to deltaic (Pamplona Marl, Ardanatz Sandstone and Ilundain Marl formations) and marginal marine deposits (Gendulain Formation). The micropalaeontological content is high. It is dominated by foraminifera, and common ostracods and other microfossils are also present. The fossil ichnoasssemblages include at least 23 ichnogenera and 28 ichnospecies indicative of Nereites, Cruziana, Glossifungites and ?Scoyenia-Mermia ichnofacies. Body macrofossils of 78 taxa corresponding to macroforaminifera, sponges, corals, bryozoans, brachiopods, annelids, molluscs, arthropods, echinoderms and vertebrates have been identified. Both the number of ichnotaxa and of species (e. g. bryozoans, molluscs and condrichthyans) may be considerably higher. Body fossil assemblages are comparable to those from the Eocene of the Nord Pyrenean area (Basque Coast), and also to those from the Eocene of the west-central and eastern part of South Pyrenean area (Aragon and Catalonia). At the European scale, the molluscs assemblages seem endemic from the Pyrenean area, although several Tethyan (Italy and Alps) and Northern elements (Paris basin and Normandy) have been recorded. Palaeontological data of studied sedimentary units fit well with the shallowing process that throughout the middle and late Eocene occurs in the area, according to the sedimentological and stratigraphical data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O complexo batolítico das Beiras está localizado na Zona Centro Ibérica (ZCI), no centro norte de Portugal. É predominantemente composto por rochas granitóides instaladas em metassedimentos de idade Neoproterozóica - Câmbrica Inferior, Ordovícica e Carbonífera Superior, durante ou após a última fase de deformação dúctil varisca (D3). No seu conjunto, as rochas granitóides do Batólito das Beiras cobrem um amplo espectro de idades (sin-, tardi- e tardi-pós-D3) e tipologias (tipo S e transicionais I-S). Neste trabalho apresentam-se dados petrográficos, mineralógicos, geoquímicos e isotópicos para estas intrusões e discutem-se os principais processos envolvidos na sua génese.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Santa Eulalia plutonic complex (SEPC) is a late-Variscan granitic body placed in the Ossa-Morena Zone. The host rocks of the complex belong to metamorphic formations from Proterozoic to Lower Paleozoic. The SEPC is a ring massif (ca. 400 km2 area) composed by two main granitic facies with different colours and textures. From the rim to the core, there is (i) a peripheral pink medium- to coarse-grained granite (G0 group) involving large elongated masses of mafic and intermediate rocks, from gabbros to granodiorites (M group), and (ii) a central gray medium-grained granite (G1 group). The mafic to intermediate rocks (M group) are metaluminous and show wide compositions: 3.34–13.51 wt% MgO; 0.70–7.20 ppm Th; 0.84–1.06 (Eu/Eu*)N (Eu* calculated between Sm and Tb); 0.23–0.97 (Nb/Nb*)N (Nb* calculated between Th and La). Although involving the M-type bodies and forming the outer ring, the G0 granites are the most differentiated magmatic rocks of the SEPC, with a transitional character between metaluminous and peraluminous: 0.00–0.62 wt% MgO; 15.00–56.00 ppm Th; and 0.19–0.42 (Eu/Eu*)N ; 0.08–0.19 (Nb/Nb*)N [1][2]. The G1 group is composed by monzonitic granites with a dominant peraluminous character and represents the most homogeneous compositional group of the SEPC: 0.65–1.02 wt% MgO; 13.00–16.95 ppm Th; 0.57–0.70 (Eu/Eu*)N ; 0.14–0.16 (Nb/Nb*)N . According to the SiO2 vs. (Na2O+K2O–CaO) relationships, the M and G1 groups predominantly fall in the calc-alkaline field, while the G0 group is essencially alkali-calcic; on the basis of the SiO2 vs. FeOt/(FeOt+MgO) correlation, SEPC should be considered as a magnesian plutonic association [3]. New geochronological data (U-Pb on zircons) slightly correct the age of the SEPC, previously obtained by other methods (290 Ma, [4]). They provide ages of 306  2 Ma for the M group, 305  6 Ma for the G1 group, and 301  4 Ma for the G0 group, which confirm the late-Variscan character of the SEPC, indicating however a faintly older emplacement, during the Upper Carboniferous. Recent whole-rock isotopic data show that the Rb-Sr system suffered significant post-magmatic disturbance, but reveal a consistent set of Sm-Nd results valuable in the approach to the magmatic sources of this massif: M group (2.9 < Ndi < +1.8); G1 group (5.8 < Ndi < 4.6); G0 group (2.2 < Ndi < 0.8). These geochemical data suggest a petrogenetic model for the SEPC explained by a magmatic event developed in two stages. Initially, magmas derived from long-term depleted mantle sources (Ndi < +1.8 in M group) were extracted to the crust promoting its partial melting and extensive mixing and/or AFC magmatic evolution, thereby generating the G1 granites (Ndi < 4.6). Subsequently, a later extraction of similar primary magmas in the same place or nearby, could have caused partial melting of some intermediate facies (e.g. diorites) of the M group, followed by magmatic differentiation processes, mainly fractional crystallization, able to produce residual liquids compositionally close to the G0 granites (Ndi < 0.8). The kinetic energy associated with the structurally controlled (cauldron subsidence type?) motion of the G0 liquids to the periphery, would have been strong enough to drag up M group blocks as those occurring inside the G0 granitic ring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ediacaran fronds are key components of terminal-Proterozoic ecosystems. They represent one of the most widespread and common body forms ranging across all major faunal localities and time slices postdating the Gaskiers glaciation, but uncertainty over their phylogenetic affinities has led to uncertainty over issues of homology and functional morphology between, and within, organisms displaying this ecomorphology. Here we present the first large scale, multi-group cladistic analysis of Ediacaran organisms sampling 20 ingroup taxa with previously asserted affinities to the Arboreomorpha, Erniettomorpha and Rangeomorpha. Using a newly derived morphological character matrix that incorporates multiple axes of potential phylogenetically informative data, including architectural, developmental, and structural qualities, we seek to illuminate the evolutionary history of these organisms. We find strong support for existing classification schema and devise apomorphy-based definitions for each of the three frondose clades examined here. Through a rigorous cladistics framework it is possible to discern the pattern of evolution within, and between, these clades, including the identification of homoplasies and functional constraints. This work both validates earlier studies of Ediacaran groups and accentuates instances where previous assumptions of their natural history are uninformative.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NEW DATA ON THE CHRONOLOGY OF THE VALE DO FORNO SEDIMENTARY SEQUENCE (LOWER TAGUS RIVER TERRACE STAIRCASE) AND ITS RELEVANCE AS FLUVIAL ARCHIVE OF THE MIDDLE PLEISTOCENE IN WESTERN IBERIA Pedro P. Cunha 1, António A. Martins 2, Jan-Pieter Buylaert 3,4, Andrew S. Murray 4, Luis Raposo 5, Paolo Mozzi 6, Martin Stokes 7 1 MARE - Marine and Environmental Sciences Centre, Department of Earth Sciences, University of Coimbra, Portugal: pcunha@dct.uc.pt 2 MARE - Marine and Environmental Sciences Centre, Dep. Geociências, University of Évora, Portugal; aam@uevora.pt 3 Centre for Nuclear Technologies, Technical University of Denmark, Risø Campus, Denmark; jabu@dtu.dk 4 Nordic Laboratory for Luminescence Dating, Aarhus University, Risø DTU, Denmark; anmu@dtu.dk 5 Museu Nacional de Arqueologia, Lisboa, Portugal; 3raposos@sapo.pt 6 Department of Geosciences, University of Padova, Italy; paolo.mozzi@unipd.it 7 School of Geography, Earth and Environmental Sciences, University of Plymouth, UK; m.stokes@plymouth.ac.uk The stratigraphic units that record the evolution of the Tagus River in Portugal (study area between Vila Velha de Ródão and Porto Alto villages; Fig. 1) have different sedimentary characteristics and lithic industries (Cunha et al., 2012): - a culminant sedimentary unit (the ancestral Tagus, before the drainage network entrenchment) – SLD13 (+142 to 262 m above river bed – a.r.b.; with probable age ca. 3,6 to 1,8 Ma), without artefacts; - T1 terrace (+84 to 180 m; ca. 1000? to 900 ka), without artefacts; - T2 terrace (+57 to 150 m; top deposits with a probable age ca. 600 ka), without artefacts; - T3 terrace (+43 to 113 m; ca. 460 to 360? ka), without artefacts; - T4 terrace (+26 to 55 m; ca. 335 a 155 ka), Lower Paleolithic (Acheulian) at basal and middle levels but early Middle Paleolithic at top levels; - T5 terrace (+5 to 34 m; 135 to 73 ka), Middle Paleolithic (Mousterian; Levallois technique); - T6 terrace (+3 to 14 m; 62 to 32 ka), late Middle Paleolithic (late Mousterian); - Carregueira Sands (aeolian sands) and colluvium (+3 a ca. 100 m; 32 to 12 ka), Upper Paleolithic to Epipaleolithic; - alluvial plain (+0 to 8 m; ca. 12 ka to present), Mesolithic and more recent industries. The differences in elevation (a.r.b.) of the several terrace staircases results from differential uplift due to active faults. Longitudinal correlation with the terrace levels indicates that a graded profile ca. 200 km long was achieved during terrace formation periods and a strong control by sea base level was determinant for terrace formation. The Neogene sedimentary units constituted the main source of sediments for the fluvial terraces (Fig. 2). Geomorphological mapping, coupled with lithostratigraphy, sedimentology and luminescence dating (quartz-OSL and K-feldspar post-IRIR290) were used in this study focused on the T4 terrace, which comprises a Lower Gravels (LG) unit and an Upper Sand (US) unit. The thick, coarse and dominantly massive gravels of the LG unit indicate deposition by a coarse bed-load braided river, with strong sediment supply, high gradient and fluvial competence, during conditions of rapidly rising sea level. Luminescence dating only provided minimum ages but it is probable that the LG unit corresponds to the earlier part of the MIS9 (ca. 335 to 325 ka), immediately postdating the incision promoted by the very low sea level (reaching ca. -140 m) during MIS10 (362 to 337 ka), a period of relatively cold climate conditions with weak vegetation cover on slopes and low sea level. Fig. 1. Main Portuguese reaches in which the Tagus River can be divided (Lower Tagus Basin): I – from the Spanish border to Arneiro (a general E–W trend, mainly consisting of polygonal segments); II – from Arneiro to Gavião (NE–SW); III – from Gavião to Arripiado (E–W); IV – from Arripiado to Vila Franca de Xira (NNE-SSW); V – from Vila Franca de Xira to the Atlantic shoreline. The faults considered to be the limit of the referred fluvial sectors are: F1 – Ponsul-Arneiro fault (WSW-ENE); F2 – Gavião fault (NW-SE); F3 – Ortiga fault (NW-SE); F4 – Vila Nova da Barquinha fault (W-E); F5 – Arripiado-Chamusca fault (NNE-SSW). 1 – estuary; 2 – terraces; 3 – faults; 4 – Tagus main channel. The main Iberian drainage basins are also represented (inset). The lower and middle parts of the US unit, comprising an alternation of clayish silts with paleosols and minor sands to the east (flood-plain deposits) and sand deposits to the west (channel belt), have a probable age of ca. 325 to 200 ka. This points to formation during MIS9 to MIS7, under conditions of high to medium sea levels and warm to mild conditions. The upper part of the US unit, dominated by sand facies and with OSL ages of ca. 200 to 154 ka, correlates with the early part of the MIS6. During this period, progradation resulted from climate deterioration and relative depletion of vegetation that promoted enhanced sediment production in the catchment, coupled with initiation of sea-level lowering that increased the longitudinal slope. The Vale do Forno and Vale da Atela archaeological sites (Alpiarça, central Portugal) document the earliest human occupation in the Lower Tagus River, well established in geomorphological and environmental terms, within the Middle Pleistocene. The Lower Palaeolithic sites were found on the T4 terrace (+26 m, a.r.b.). The oldest artefacts previously found in the LG unit, display crude bifacial forms that can be attributed to the Acheulian, with a probable age of ca. 335 to 325 ka. The T4 US unit has archaeological sites stratigraphically documenting successive phases of an evolved Acheulian, that probably date ca. 325 to 300 ka. Notably, these Lower Palaeolithic artisans were able to produce tools with different sophistication levels, simply by applying different strategies: more elaborated reduction sequences in case of bifaces and simple reduction sequences to obtain cleavers. Fig. 2. . Simplified geologic map of the Lower Tagus Cenozoic basin, adapted from the Carta Geológica de Portugal, 1/500000, 1992). The study area (comprising the Vale do Forno and Vale de Atela sites) is located on the more upstream sector of the Lower Tagus River reach IV, between Arripiado and Chamusca villages. 1 – alluvium (Holocene); 2 – terraces (Pleistocene); 3 – sands, silts and gravels (Paleogene to Pliocene); 4 – Sintra Massif (Cretaceous); 5 – limestones, marls, silts and sandstones (Mesozoic); 6 – quartzites (Ordovician); 7 – basement (Proterozoic to Palaeozoic); 8 – main fault. The main Portuguese reaches of the Tagus River are identified (I to V). The VF3 site (Milharós), containing a Final Acheulian industry, with fine and elaborated bifaces) found in a stratigraphic level located between the T4 terrace deposits and a colluvium associated with Late Pleistocene aeolian sands (32 to 12 ka), has an age younger than ca. 154 ka but much older than 32 ka. In the study area, the sedimentary units of the T4 terrace seem to record the river response to sea-level changes and climatically-driven fluctuations in sediment supply. REFERENCES Cunha P. P., Almeida N. A. C., Aubry T., Martins A. A., Murray A. S., Buylaert J.-P., Sohbati R., Raposo L., Rocha L., 2012, Records of human occupation from Pleistocene river terrace and aeolian sediments in the Arneiro depression (Lower Tejo River, central eastern Portugal). Geomorphology, vol. 165-166, pp. 78-90.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After the Congress, a six-day field trip, will be held through three southwestern provinces of Angola (Huíla, Namibe and Cunene), every day starting and ending in the city of Lubango, for overnight stay in Lubango, with the purpose to observe some of the main sites of geological interest in this zone of Angola. The itinerary of this field trip presents the geologic history of Southwestern Angola and its evolution in the scope of the Congo Craton, through a trip that begins in the first excursion days by the oldest geologic formations and phenomena until the recent geologic formations and phenomena on the last excursion days. On the first and second excursion days, September 5th and September 6th, the field trip will go along the Kunene Anorthosite Complex of Angola (KAC), to observe some petrographic features of the KAC that are important to understand the emplacement of this huge igneous massif of the early Kibarean age. These days of the field trip allow the observation of Earthen Construction, because this region of Cunene is privileged to appreciate a kind of Eco-construction, made of raw earth and in wattle and daub, built with ancient techniques, which constitute a real GeoHeritage. On September 7th, in the morning, the destination will be Tundavala, to visit Tundavala Gap, a huge escarpment of more than 1,000 m high cutted in Neo-Archean and Paleo-Proterozoic igneous rocks, the Ruins of Tundavala (quartzite blocks with sedimentary structures) and Tundavala Waterfalls on a quartzitic scarp. After lunch, the field trip continues towards Humpata plateau to observe the panoramic view over Lubango city from the Statue of Cristo Rei, then the outcrops of dolomitic limestones with stromatolites and dolerites and finally the Leba passage, a huge escarpment and one of the most spectacular parts of the Serra da Chela, traversed by a mountain road built in the early 70s of the last century, that can be observed from the belvedere of the Serra da Chela. On September 8th, the destination is the carbonatite complexes of Tchivira and Bonga, belonging to the Mesozoic alkaline massifs of ultrabasic rocks, a rift valley system that occurs during the Early Cretaceous. In this forth excursion day, due to the huge dimensions of these two carbonatite structures it will be visited, only, the Complex of Bonga, namely the outcrops of the northern part of the structure and secondary deposits on the boundary on the southern part of the of the Complex. The last two excursion days, September 9th and September 10th, are to observe the Cretaceous Basin of Namibe. On September 9th, the northern part of Namibe Basin will be visited to observe the volcanic basic rocks of Namibe as well as the interesting paleontological site of Bentiaba. On September 10th, the destination is the southern and more recent part of Namibe Basin, where on the Namib Desert, the exotic plant Welwitschia mirabilis can be observed, as well as Arco, an oasis in the desert. This last excursion day, ends up at the dunes of Tombwa near the mouth of Curoca river and the beautiful bay of Tombwa, where can be observed heavy minerals in their beach sands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The micro-chemical/mineralogical composition of samples of grey-paste imitations of Italic Late Republican black gloss tableware displaying a particular kind of lozenge-shaped decoration (“Losanga pottery”) from Portuguese and Spanish archaeological sites in SW Iberia has been analysed by BSEM + EDS, μXRD, Powder XRD, Portable XRF and μRaman spectroscopy. “Losanga” decorated ceramics have been found throughout the Western Mediterranean. Most of the sherds display a green-brown to greyish-black engobe at the surface resembling the gloss found in Attic pottery from Classical Greece. The overall chemical, mineralogical and fossiliferous homogeneities of the ceramic paste show common features (low K-feldspar/plagioclase ratio, high Ca content, abundance of well-preserved fragments of foraminifera microfossils) that indicate low firing conditions in the kiln ranging from 650 to 900 °C. With respect to the ceramic body, analytical results confirm an enrichment in the surface gloss layer of iron, potassium and aluminium and a depletion in silicon and calcium; the very fine grain size of the surface coating suggests elutriation of iron oxide-rich clays as confirmed by the presence of magnetite, maghemite and goethite in μ-XRD scan. Chemical and mineralogical data also suggest that the firing process was performed in a 600–850 °C temperature range, adopting the well-known technique of alternating oxidizing and reducing firing conditions largely employed at the time. The analytical results, while compatible with the archaeological hypothesis of a common provenance of the raw materials for pottery production from the Guadalquivir valley workshops cannot be considered conclusive due to the similarity in the geological substrate in the two SW Iberian regions under study.