622 resultados para POLYSACCHARIDES
Resumo:
The mycobacterial cell envelope is fascinating in several ways. First, its composition is unique by the exceptional lipid content, which consists of very long-chain (up to C90) fatty acids, the so-called mycolic acids, and a variety of exotic compounds. Second, these lipids are atypically organized into a Gram-negative-like outer membrane (mycomembrane) in these Gram-positive bacteria, as recently revealed by CEMOVIS, and this mycomembrane also contains pore-forming proteins. Third, the mycolic acids esterified a holistic heteropolysaccharide (arabinogalacan), which in turn is linked to the peptidoglycan to form the cell wall skeleton (CWS). In slow-growing pathogenic mycobacterial species, this giant structure is surrounded by a capsular layer composed mainly of polysaccharides, primarily a glycogen-like glucan. The CWS is separated from the plasma membrane by a periplasmic space. A challenging research avenue for the next decade comprises the identification of the components of the uptake and secretion machineries and the isolation and biochemical characterization of the mycomembrane.
Resumo:
Heparan sulfate proteoglycans and their corresponding binding sites have been suggested to play an important role during the initial attachment of blastocysts to uterine epithelium and human trophoblastic cell lines to uterine epithelial cell lines. Previous studies on RL95 cells, a human uterine epithelial cell line, characterized a single class of cell surface heparin/heparan sulfate (HP/HS)-binding sites. Three major HP/HS-binding peptide fragments were isolated from RL95 cell surfaces by tryptic digestion and partial amino-terminal amino acid sequence from each peptide fragment was obtained. In the current study, using the approaches of reverse transcription-polymerase chain reaction and cDNA library screening, a novel cell surface $\rm\underline{H}$P/HS $\rm\underline{i}$nteracting $\rm\underline{p}$rotein (HIP) has been isolated from RL95 cells. The full-length cDNA of HIP encodes a protein of 259 amino acids with a calculated molecular weight of 17,754 Da and pI of 11.75. Transfection of HIP cDNA into NIH-3T3 cells demonstrated cell surface expression and a size similar to that of HIP expressed by human cells. Predicted amino acid sequence indicates that HIP lacks a membrane spanning region and has no consensus sites for glycosylation. Northern blot analysis detected a single transcript of 1.3 kb in both total RNA and poly(A$\sp+$) RNA. Examination of human cell lines and normal tissues using both Northern blot and Western blot analysis revealed that HIP is differentially expressed in a variety of human cell lines and normal tissues, but absent in some cell lines examined. HIP has about 80% homology, at the level of both mRNA and protein, to a rodent protein, designated as ribosomal protein L29. Thus, members of the L29 family may be displayed on cell surfaces where they participate in HP/HS binding events. Studies on a synthetic peptide derived from HIP demonstrate that HIP peptide binds HS/HP with high selectivity and has high affinity (Kd = 10 nM) for a subset of polysaccharides found in commercial HIP preparations. Moreover, HIP peptide also binds certain forms of cell surface, but not secreted or intracellular. HS expressed by RL95 and JAR cells. This peptide supports the attachment of several human trophoblastic cell lines and a variety of mammalian adherent cell lines in a HS-dependent fashion. Furthermore, studies on the subset of HP specifically recognized by HIP peptide indicate that this high-affinity HP (HA-HP) has a larger median MW and a greater negative charge density than bulk HP. The minimum size of oligosaccharide required to bind to HIP peptide with high affinity is a septa- or octasaccharide. HA-HP also quantitatively binds to antithrombin-III (AT-III) with high affinity, indicating that HIP peptide and AT-III may recognize the same or similar oligosaccharide structure(s). Furthermore, HIP peptide antagonizes HP action and promotes blood coagulation in both factor Xa- and thrombin-dependent assays. Finally, HA-HP recognized by HP peptide is highly enriched with anticoagulant activity relative to bulk HP. Collectively, these results demonstrate that HIP may play a role in the HP/HS-involved cell-cell and cell-matrix interactions and recognizes a motif in HP similar or identical to that recognized by AT-III and therefore, may modulate blood coagulation. ^
Resumo:
Genomic libraries of two Enterococcus faecalis strains, OG1RF and TX52 (an isolate from an endocarditis patient), were constructed in Escherichia coli and were screened with serum from a rabbit immunized with surface proteins of an E. faecalis endocarditis isolate and sera from four patients with enterococcal endocarditis. Thirty-eight immunopositive cosmid clones reacted with at least two of the patient sera and contained distinct inserts based on their DNA restriction patterns. These were chosen for further subcloning in a pBluescript SK ($-$) vector. Each sublibrary was screened with one of the five sera. Analysis of sequences from the immunopositive subclones revealed similarities to a range of proteins, including bacterial virulence factors, transporters, two-component regulators, metabolic enzymes, and membrane or cell surface proteins. Fourteen subclones did not show significant similarity to any sequence in the databases and may contain novel genes. Thirteen of the immunopositive cosmid clones did not yield immunopositive subclones and one such cosmid clone, TX5159, produced an antigenic polysaccharide in Escherichia coli. The insert of TX5159 was found to contain a multicistronic gene cluster containing genes similar to those involved in the biosynthesis and export of polysaccharides from both Gram-positive and Gram-negative organisms. Insertions in several genes within the cluster abolished the immunoreactivity of TX5159. RT-PCR of genes within the cluster with total RNA from OG1RF showed that these genes are transcribed. The polysaccharide was detected in two recently reported E. faecalis mucoid strains using specific antibody, but not in the other strains tested. This is the first report on a gene cluster of E. faecalis involved in the biosynthesis of an antigenic polysaccharide. ^
Resumo:
Mycoplasma mycoides subsp. capri (Mmc) and subsp. mycoides (Mmm) are important ruminant pathogens worldwide causing diseases such as pleuropneumonia, mastitis and septicaemia. They express galactofuranose residues on their surface, but their role in pathogenesis has not yet been determined. The M. mycoides genomes contain up to several copies of the glf gene, which encodes an enzyme catalysing the last step in the synthesis of galactofuranose. We generated a deletion of the glf gene in a strain of Mmc using genome transplantation and tandem repeat endonuclease coupled cleavage (TREC) with yeast as an intermediary host for the genome editing. As expected, the resulting YCp1.1-Δglf strain did not produce the galactofuranose-containing glycans as shown by immunoblots and immuno-electronmicroscopy employing a galactofuranose specific monoclonal antibody. The mutant lacking galactofuranose exhibited a decreased growth rate and a significantly enhanced adhesion to small ruminant cells. The mutant was also 'leaking' as revealed by a β-galactosidase-based assay employing a membrane impermeable substrate. These findings indicate that galactofuranose-containing polysaccharides conceal adhesins and are important for membrane integrity. Unexpectedly, the mutant strain showed increased serum resistance.
Resumo:
Enterococci are normal flora in the human intestinal tract, and also one of the leading causes of nosocomial infections, with most of the clinical isolates being Enterococcus faecalis and Enterococcus faecium. Despite extensive studies on the antibiotic resistance, the pathogenicity of enterococci is not well understood, especially for E. faecium. To identify potential virulence factors based on their antigenicity during infection, E. faecium genomic libraries were constructed and screened using sera from patients with E. faecium endocarditis. ^ As one of my projects, total polysaccharides were extracted from E. faecalis OG1RF and from two epa mutants constructed previously, TX5179 and TX5180, and western blots with patient sera showed that an immuno-reactive polysaccharide present in wild type OG1RF was not produced by either of the two epa mutants. The epa mutants were more sensitive to ethanol stress, neutrophil killing and neutrophil phagocytosis than the wild type OG1RF. ^ Expression of virulence factors is commonly regulated by two component systems. A BLAST search was performed to identify potential two component systems in the E. faecalis V583 genome database using PhoP/PhoS as query sequences, and 11 gene pairs were identified, seven of which were disrupted in E. faecalis OGIRF. ^ Finally, an in vitro translocation model was established for enterococci. E. faecalis strain OG1RF and E. faecium strain DO were shown to be able to translocate across a T84 monolayer, while E. coli strain DH5α and E. faecalis strain E1 could not. ^ In conclusion, several E. faecium antigens expressed in infection (whose antibodies present in sera from patients with E. faecium endocarditis) were identified, two of which, SagA and GlyA, were characterized and suggested to be involved in cell wall metabolism. E. faecalis epa gene cluster (involving in polysaccharide biosynthesis and known to be involved in virulence of E. faecalis in mice) was shown to be involved in hindering neutrophil killing. Several two-component systems were identified in E. faecalis and two of which, EtaRS and EtbRS, were involved in E. faecalis virulence in a mouse peritonitis model.^
Resumo:
Plant cell walls largely consist of matrix polysaccharides that are linked to cellulose microfibrils. Xyloglucan, the primary hemicellulose of the cell wall matrix, consists of a repeating glucose tetramer structure with xylose residues attached to the first three units ('XXXG'). In Arabidopsis thaliana, the core XXXG structure is further modified by enzymatic addition of galactose and fucose residues to the xylose side chains to produce XLXG, XXLG, XLLG and XLFG structures. GT14 is a putative glycosyltransferase in the GT47 gene family. Initial predictions of GT14's hydrophobic regions, based on its translated amino acid sequence, are almost identical to its Arabidopsis homolog MUR3, which is a xyloglucan galactosyltransferase targeted to the Golgi membrane. This suggests that, like MUR3, GT14 possesses a transmembrane domain and that it is targeted to the Golgi. The monosaccharide composition of leaves from T-DNA insertion knockouts of GT14 was analyzed by gas-liquid chromatography. The gt14 plants were found to have lower fucose and higher mannose contents than wild type plants. Analysis of cell wall and soluble fractions from gt14 and wild type plants revealed that most of the deficiency in fucose was accounted for in the cell wall, supporting the idea that GT14's target is xyloglucan. Finally, gt14 and wild type plants were transformed with GT14 for complementation and overexpression analysis. The majority of transformed plants did not show significant changes with regard to monosaccharide composition. This may be because the plants were in the T1 generation and, thus, hemizygous. Analysis of homozygous plants in the T2 generation may reveal noticeable changes. Further studies on the xyloglucan composition of gt14 plants are necessary to put the observed reduction in cell wall fucose into a meaningful context.
Resumo:
The gliding bacterium Myxococcus xanthus aggregates to form spore-filled fruiting bodies when starved at high density. All of the identified M. xanthus lipopolysaccharide (LPS) O-antigen biosynthesis mutants exhibit defective motility and fruiting-body development. To determine the cause of these phenotypes, the cell-surface properties of the LPS O-antigen mutants were compared to wild-type cells. The binding characteristics of wild-type and LPS O-antigen-defective strains to cationic resin indicate that the mutant cell surfaces are more electronegative. Antibiotic sensitivity and hexadecane adhesion assays indicate that the wild-type M. xanthus cell surface is hydrophobic, supporting the idea that phospholipids are present in the outer leaflet of the outer membrane. The absence of the LPS O-antigen appears to expose charges associated with phospholipids and LPS core/lipid A, resulting in a dramatic alteration of the cell-surface organization and charge. These differences may affect the interaction of the LPS O-antigen mutants with their substratum and neighboring cells, leading to defects in social and single-cell gliding motility and thus, deficiencies in fruiting body formation. ^ The LPS O-antigen biosynthetic mutations also bypass the requirement of 4521 gene expression for the cell-density signal, A signal. The 4521 gene is overexpressed in these mutants. This 4521 overexpression is dependent on the sensor kinase SasS. Co-development with wild-type cells, or the addition of crude polysaccharides or membrane vesicles restores the ability of LPS O-antigen mutants to form fruiting bodies and lowers 4521 developmental gene expression to wild-type levels. Wild-type vesicles may attach or incorporate into the outer membrane of the mutants that lack LPS O-antigen, restoring a wild-type periplasmic status and allowing for normal levels of 4521 activity and fruiting body formation. We propose that the LPS composition and the configuration of the outer membrane are important elements for the complex behavioral response of M. xanthus fruiting body development. ^
Resumo:
Corg and Norg contents in the acid insoluble mineral fraction were studied in sediments of Site 593. Both decrease systematically from Recent to early Miocene over 425 m of carbonate facies. C/N ratios (7-11) are typically marine and indicate that residual organic matter, bound to clay minerals, was originally scavenged from the marine habitat rather than being of terrigenous origin. Variations of Corg and Norg are almost entirely controlled by rates of sedimentation, which gradually increase from Recent to early Miocene. Preliminary results of carbohydrate distribution indicate that epigenetic and diagenetic processes alter both the concentrations and the ratios of individual monomers with depth. Total carbohydrate concentrations in the samples diminish from 91 µg/g sediment at 18 m sub-bottom depth to 49 µg/g at 335 m. In contrast, sugars in the acid insoluble residue increase with depth, suggesting release of structural polysaccharides and their subsequent association with clay minerals. Ratios of arabinose to fucose, which are about 6:1 in Recent carbonaceous sediments intercepted by sediment traps, vary from 1:1 in the youngest sample to 1:2.5 in the oldest.
Resumo:
The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.
Resumo:
Patterns of distribution and variations of group and monosaccharide compositions of carbohydrates in suspended matter of the Pacific Ocean were studied. It is shown that carbohydrate content of surface ocean waters depends on reproduction of organic matter by phytoplankton. Water-insoluble polysaccharides (average 77.9% of total) predominate in composition of carbohydrates in suspended matter. Water-soluble polysaccharides and oligosaccharides were detected in considerably smaller quantities (average 12.4 and 7.3% respectively). Free monosaccharides were not detected. The main sugars in all isolated groups of carbohydrates of suspended matter are hexoses, which account for 90.8% in oligosaccharides, 64.9% in water-soluble polysaccharides, and 69.8% in water-insoluble polysaccharides. Determination of monosaccharide composition of carbohydrates in suspension showed that apparently they basically consist of mixture of reserve and structural polysaccharides (or their residues) of phytoplankton organisms.
Resumo:
As part of the PeECE II mesocosm project, we investigated the effects of pCO2 levels on the initial step of heterotrophic carbon cycling in the surface ocean. The activities of microbial extracellular enzymes hydrolyzing 4 polysaccharides were measured during the development of a natural phytoplankton bloom under pCO2 conditions representing glacial (190 µatm) and future (750 µatm) atmospheric pCO2. We observed that (1) chondroitin hydrolysis was variable throughout the pre-, early- and late-bloom phases, (2) fucoidanase activity was measurable only in the glacial mesocosm as the bloom developed, (3) laminarinase activity was low and constant, and (4) xylanase activity declined as the bloom progressed. Concurrent measurements of microbial community composition, using denaturing-gradient gel electrophoresis (DGGE), showed that the 2 mesocosms diverged temporally, and from one another, especially in the late-bloom phase. Enzyme activities correlated with bloom phase and pCO2, suggesting functional as well as compositional changes in microbial communities in the different pCO2 environments. These changes, however, may be a response to temporal changes in the development of phytoplankton communities that differed with the pCO2 environment. We hypothesize that the phytoplankton communities produced dissolved organic carbon (DOC) differing in composition, a hypothesis supported by changing amino acid composition of the DOC, and that enzyme activities responded to changes in substrates. Enzyme activities observed under different pCO2 conditions likely reflect both genetic and population-level responses to changes occurring among multiple components of the microbial loop.
Resumo:
Results of studies in two biogeochemically active zones of the Atlantic Ocean (the Benguela upwelling waters and the region influenced by the Congo River run-off) are reported in the book. A multidisciplinary approach included studies of the major elements of the ocean ecosystem: sea water, plankton, suspended matter, bottom sediments, interstitial waters, aerosols, as well as a wide complex of oceanographic studies carried out under a common program. Such an approach, as well as a use of new methodical solutions led to obtaining principally new information on different aspects of oceanology.
Resumo:
The book is devoted to study of diagenetic changes of organic matter and mineral part of sediments and interstitial waters of the Pacific Ocean due to physical-chemical and microbiological processes. Microbiological studies deal with different groups of bacteria. Regularities of quantitative distribution and the role of microorganisms in geochemical processes are under consideration. Geochemical studies highlight redox processes of the early stages of sediment diagenesis, alterations of interstitial waters, regularities of variations in chemical composition of iron-manganese nodules.