924 resultados para PARTITION-COEFFICIENT
Resumo:
This study quantitatively explores the changing population geography in Bengal, with a particular focus on Partition in India in 1947 and Independence of Bangladesh in 1971. Based on decadal census data from 1901 to 2001 at the district level, this paper explores how trends in regional population growth evolved with such historical events. Following Redding and Sturm (2008), Differences-in-Differences estimation is also employed. Estimation results show that there were different shocks on both sides and from both events. In West Bengal, the change in the regional population trends occurred in 1947 and remained similar thereafter. On the other hand, in East Bengal, the population growth became statistically significant after 1971. Further robustness checks show that the impacts were not uniform with respect to the distance from the border. Overall analyses show that the emergence of the international border in Bengal had asymmetric impacts on both sides.
Resumo:
This paper presents an algorithm for generating scale-free networks with adjustable clustering coefficient. The algorithm is based on a random walk procedure combined with a triangle generation scheme which takes into account genetic factors; this way, preferential attachment and clustering control are implemented using only local information. Simulations are presented which support the validity of the scheme, characterizing its tuning capabilities.
Resumo:
In this paper, we present calculations of the absorption coefficient for transitions between the bound states of quantum dots grown within a semiconductor and the extended states of the conduction band. For completeness, transitions among bound states are also presented. In the separation of variables, single band k·p model is used in which most elements may be expressed analytically. The analytical formulae are collected in the appendix of this paper. It is concluded that the transitions are strong enough to provide a quick path to the conduction band for electrons pumped from the valence to the intermediate band
Resumo:
The boundary element method (BEM) has been applied successfully to many engineering problems during the last decades. Compared with domain type methods like the finite element method (FEM) or the finite difference method (FDM) the BEM can handle problems where the medium extends to infinity much easier than domain type methods as there is no need to develop special boundary conditions (quiet or absorbing boundaries) or infinite elements at the boundaries introduced to limit the domain studied. The determination of the dynamic stiffness of arbitrarily shaped footings is just one of these fields where the BEM has been the method of choice, especially in the 1980s. With the continuous development of computer technology and the available hardware equipment the size of the problems under study grew and, as the flop count for solving the resulting linear system of equations grows with the third power of the number of equations, there was a need for the development of iterative methods with better performance. In [1] the GMRES algorithm was presented which is now widely used for implementations of the collocation BEM. While the FEM results in sparsely populated coefficient matrices, the BEM leads, in general, to fully or densely populated ones, depending on the number of subregions, posing a serious memory problem even for todays computers. If the geometry of the problem permits the surface of the domain to be meshed with equally shaped elements a lot of the resulting coefficients will be calculated and stored repeatedly. The present paper shows how these unnecessary operations can be avoided reducing the calculation time as well as the storage requirement. To this end a similar coefficient identification algorithm (SCIA), has been developed and implemented in a program written in Fortran 90. The vertical dynamic stiffness of a single pile in layered soil has been chosen to test the performance of the implementation. The results obtained with the 3-d model may be compared with those obtained with an axisymmetric formulation which are considered to be the reference values as the mesh quality is much better. The entire 3D model comprises more than 35000 dofs being a soil region with 21168 dofs the biggest single region. Note that the memory necessary to store all coefficients of this single region is about 6.8 GB, an amount which is usually not available with personal computers. In the problem under study the interface zone between the two adjacent soil regions as well as the surface of the top layer may be meshed with equally sized elements. In this case the application of the SCIA leads to an important reduction in memory requirements. The maximum memory used during the calculation has been reduced to 1.2 GB. The application of the SCIA thus permits problems to be solved on personal computers which otherwise would require much more powerful hardware.
Resumo:
There are a number of research and development activities that are exploring Time and Space Partition (TSP) to implement safe and secure flight software. This approach allows to execute different real-time applications with different levels of criticality in the same computer board. In order to do that, flight applications must be isolated from each other in the temporal and spatial domains. This paper presents the first results of a partitioning platform based on the Open Ravenscar Kernel (ORK+) and the XtratuM hypervisor. ORK+ is a small, reliable real-time kernel supporting the Ada Ravenscar Computational model that is central to the ASSERT development process. XtratuM supports multiple virtual machines, i.e. partitions, on a single computer and is being used in the Integrated Modular Avionics for Space study. ORK+ executes in an XtratuM partition enabling Ada applications to share the computer board with other applications.
Resumo:
A simplified CFD wake model based on the actuator-disk concept is used to simulate the wind turbine, represented by an actuator disk upon which a distribution of forces, defined as axial momentum sources, are applied on the incoming flow. The rotor is supposed to be uniformly loaded, with the exerted forces as a function of the incident wind speed, the thrust coefficient and the rotor diameter. The model is validated through experimental measurements downwind of a wind turbine in terms of wind speed deficit. Validation on turbulence intensity will also be made in the near future.
Resumo:
This paper shows the Gini Coefficient, the dissimilarity Index and the Lorenz Curve for the Spanish Port System by type of goods from 1960 to the year 2010 for business units: Total traffic, Liquid bulk cargo, Solid bulk cargo, General Merchandise and Container (TEUs) with the aim of carcaterizar the Spanish port systems in these periods and propose future strategies.