998 resultados para Oxygen reductions
Resumo:
Molecular-dynamics simulations have been carried out to investigate the electric hysteresis of barium titanate nanofilm containing oxygen vacancy ordering array parallel to the {101} crystal plane. The results obtained show a significant weakening of polarization retention from non-zero value to zero as the size of the array was reduced to a critical level, which was attributed to the formation and motion of head-to-head domain wall structure under external field loading process. By comparing with materials containing isolated oxygen vacancies, it was found that the zero retention was due to the oxygen vacancy ordering array rather than to the concentration of oxygen vacancy. Copyright (C) EPLA, 2010
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane Subunit gp91(phox) was dose-dependent. Meanwhile, the cytoplasmic subunit p47(phox) was translocated to the cell membrane and localized with p22(phox) and gp91(phox) to form reactive NADPH oxidase. Our data Suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.
Resumo:
Defect engineering for SiO2] precipitation is investigated using He-ion implantation as the first stage of separation by implanted oxygen (STMOX). Cavities are created in Si by implantation with helium ions. After thermal annealing at different temperatures, the sample is implanted with 120keV 8.0 x 10(16) cm(-2) O ions. The O ion energy is chosen such that the peak of the concentration distribution is centred at the cavity band. For comparison, another sample is implanted with O ions alone. Cross-sectional transmission electron microscopy (XTEM), Fourier transform infrared absorbance spectrometry (FTIR) and atomic force microscopy (AFM) measurements are used to investigate the samples. The results show that a narrow nano-cavity layer is found to be excellent nucleation sites that effectively assisted SiO2 formation and released crystal lattice strain associated with silicon oxidation.