733 resultados para Oscillators, Sweep
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
De forma geral, os cursos de física clássica oferecidos nas universidades carecem de exemplos de aplicações nas áreas de química e biologia, o que por vezes desmotivam os alunos de graduação destas áreas a estudarem os conceitos físicos desenvolvidos em sala de aula. Neste texto, a analogia entre os osciladores elétrico e mecânico é explorada visando possívies aplicações em química e biologia, mostrando-se de grande valia devido ao seu uso em técnicas de medição de variação de massa com alta precisão, tanto de forma direta como indireta. Estas técnicas são conhecidas como técnicas eletrogravimétricas e são de especial importância em aplicações que envolvem biossensores. Desta forma, o texto explora o estudo da analogia eletromecânica de forma interdisciplinar envolvendo as áreas de física, química e biologia. Baseado nessa analogia é proposto um experimento que permite a sua aplicação em diferentes níveis conceituais dessas disciplinas, tanto em abordagem básica como mais profunda.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We compute the partition function of an anyon-like harmonic oscillator. The well known results for both the bosonic and fermionic oscillators are then re-obtained as particular cases of our function. The technique we employ is a non-relativistic version of the Green function method used in the computation of one-loop effective actions of quantum field theory.
Resumo:
The erbium-based manganite ErMnO3 has been partially substituted at the manganese site by the transition-metal elements Ni and Co. The perovskite orthorhombic structure is found from x(Ni) = 0.2-0.5 in the nickel-based solid solution ErNixMn1-xO3, while it can be extended up to x(Co) = 0.7 in the case of cobalt, provided that the synthesis is performed under oxygenation conditions to favor the presence of Co3+. Presence of different magnetic entities (i.e., Er3+, Ni2+, Co2+, Co3+, Mn3+, and Mn4+) leads to quite unusual magnetic properties, characterized by the coexistence of antiferromagnetic and ferromagnetic interactions. In ErNixMn1-xO3, a critical concentration x(crit)(Ni) = 1/3 separates two regimes: spin-canted AF interactions predominate at x < x(crit), while the ferromagnetic behavior is enhanced for x > x(crit). Spin reversal phenomena are present both in the nickel- and cobalt-based compounds. A phenomenological model based on two interacting sublattices, coupled by an antiferromagnetic exchange interaction, explains the inversion of the overall magnetic moment at low temperatures. In this model, the ferromagnetic transition-metal lattice, which orders at T-c, creates a strong local field at the erbium site, polarizing the Er moments in a direction opposite to the applied field. At low temperatures, when the contribution of the paramagnetic erbium sublattice, which varies as T-1, gets larger than the ferromagnetic contribution, the total magnetic moment changes its sign, leading to an overall ferrimagnetic state. The half-substituted compound ErCo0.50Mn0.50O3 was studied in detail, since the magnetization loops present two well-identified anomalies: an intersection of the magnetization branches at low fields, and magnetization jumps at high fields. The influence of the oxidizing conditions was studied in other compositions close to the 50/50 = Mn/Co substitution rate. These anomalies are clearly connected to the spin inversion phenomena and to the simultaneous presence of Co2+ and Co3+ magnetic moments. Dynamical aspects should be considered to well identify the high-field anomaly, since it depends on the magnetic field sweep rate. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The charged oscillator, defined by the Hamiltonian H = -d2/dr2+ r2 + lambda/r in the domain [0, infinity], is a particular case of the family of spiked oscillators, which does not behave as a supersingular Hamiltonian. This problem is analysed around the three regions lambda --> infinity, lambda --> 0 and lambda --> -infinity by using Rayleigh-Ritz large-order perturbative expansions. A path is found to connect the large lambda regions with the small lambda region by means of the renormalization of the series expansions in lambda. Finally, the Riccati-Pade method is used to construct an implicit expansion around lambda --> 0 which extends to very large values of Absolute value of lambda.
Resumo:
A versatile voltammetric method for quantitative determination of fenbendazole (FBZ) in commercial tablets has been proposed, where direct dissolution of tablets is carried out in 0.1 mol l(-1) tetrabutylamoniun tetrafluorborate containing dimethylformamide solutions. Linear sweep (LSV), square wave (SWV) and differential pulse (DPV) voltammetry techniques were applied to study FBZ at a glassy carbon electrode, exhibiting a well defined irreversible oxidation peak at 1.15 V vs. SCE. This methodology allows a precise quantitative determination of FBZ presenting detection limits of 5.2 x 10(-5) (LSV), 5.0 x 10(-6) (DPV) and 5.0 x 10(-5) mol l(-1) (SWV). (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We study energy localization in a finite one-dimensional Phi(4) oscillator chain with initial energy in a single oscillator of the chain. We numerically calculate the effective number of degrees of freedom sharing the energy on the lattice as a function of time. We find that for energies smaller than a critical value, energy equipartition among the oscillators is reached in a relatively short time. on the other hand, above the critical energy, a decreasing number of particles sharing the energy is observed. We give an estimate of the effective number of degrees of freedom as a function of the energy. Our results suggest that localization is due to the appearance, above threshold, of a breather-like structure. Analytic arguments are given, based on the averaging theory and the analysis of a discrete nonlinear Schrodinger equation approximating the dynamics, to support and explain the numerical results.
Resumo:
We study energy localization on the oscillator chain proposed by Peyrard and Bishop to model DNA. We search numerically for conditions with initial energy in a small subgroup of consecutive oscillators of a finite chain and such that the oscillation amplitude is small outside this subgroup on a long time scale. We use a localization criterion based on the information entropy and verify numerically that such localized excitations exist when the nonlinear dynamics of the subgroup oscillates with a frequency inside the reactive band of the linear chain. We predict a mimium value for the Morse parameter (mu>2.25) (the only parameter of our normalized model), in agreement with the numerical calculations (an estimate for the biological value is mu=6.3). For supercritical masses, we use canonical perturbation theory to expand the frequencies of the subgroup and we calculate an energy threshold in agreement with the numerical calculations.